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Abstract

Humans possess a unique ability tomanipulate tools to help us navigate theworld around us. This ability is facilitated by the dexterity of our
hands. However, millions lose this capability annually due to conditions like limb amputation or cerebral vascular accident (i.e., stroke). This
great loss of human hand function has led to increased study of human hand action. Although previous research focused on coordinated
hand motion, known as synergies, during reaching and grasping, manipulation of complex objects remains understudied. Specifically, we
aimed to test two hypotheses: 1) the number of synergies underlyingmanipulation is the same as those underlying reach-and-grasp, and2)
the identity of synergies underlyingmanipulation is different from those underlying reach-and-grasp. To do so, wemeasured human hand
motion during two experiments: 1) during reach and grasp of a tool or object commonly used in wire harness installation and 2) during
manipulation of those objects and tools to install a wire harness on a mock electrical cabinet. Results showed that manipulation generally
required more synergies than grasp. Comparison between reach-and-grasp and manipulation revealed a decrease in synergy similarity
with synergy-order. Considering that higher-order synergies become significant during manipulation, it is important that we investigate
these differences; this study serves as a point of entry to doing so. If wewant our prosthetic and rehabilitative devices to restore hand func-
tion to thosewhohave lost it, wemust study hand function, specificallymanipulation, andnot just grasping.

NEW & NOTEWORTHY This study uncovers new insights into kinematic synergies during functional human hand manipulation of
objects and tools, through the study of wire harness installation. It emphasizes the nuanced distinctions between functional hand
manipulation and simple grasping, revealing that manipulation tasks require a greater number and distinct subset of hand synergies
compared with simple grasp actions. This research marks a significant step toward appreciating the intricacies of hand coordination in
complex tasks beyond grasping.

manipulation; motor control; physical interaction; synergy; tool use

INTRODUCTION

A hallmark of human behavior is the ability to use tools
to help us manage our environment. For instance, in read-
ing this paper, you have likely driven to the office, used a
computer, and written notes—activities that all involve
tools such as the car’s steering wheel, the computer key-
board, and a pen. The remarkable dexterity of the human
hand allows us to manipulate a wide variety of tools—a
capability few other species possess (1–4).

Unfortunately, many individuals face injuries or condi-
tions that impair or eliminate hand dexterity. For instance,

�15 million people globally and 800,000 Americans experi-
ence motor function loss due to cerebral vascular accidents
(CVAs) each year, with hand function often being the most
severelyaffectedandrecovering the least (5). Inaddition, 23mil-
lion peopleworldwide and�700,000Americans are livingwith
hand amputations, a number projected to double in the United
States by 2050 (6, 7). In a world designed for individuals with
dexterous hands, the loss of hand function poses significant
challenges, severely impacting the ability to perform everyday
tasks.

Efforts to rehabilitatemotor function after CVA and to design
prosthetic hands have driven research into understanding
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human handmotion. However, analyzing hand kinematics is
challenging due to its more than 20 degrees of freedom
across various joints (8). Insights from biomechanics and sen-
sory-motor control can simplify this complexity by suggest-
ing that many of these degrees of freedom are controlled in
functional groups, influenced by biomechanical (and possi-
bly neural) constraints. These functional groupings, com-
monly referred to as synergies, reduce the effective degrees
of freedom in the hand. Mathematically, if h 2 ℝn denotes
the configuration (joint angles) of the hand, a kinematic syn-
ergy may be described by a mapping h ¼ j(d), where d 2 ℝm

is a descending neural command with fewer dimensions
than h, i.e., m < n, and j(·) is a time-invariant mapping such
that h tð Þ ¼ j d tð Þð Þ. Under this assumption, a linear approxi-
mation of the kinematic mapping j(·) can be obtained using
dimensionality reduction methods such as principal compo-
nent analysis (9) or singular value decomposition.

Inspired by Bernstein’s work (10, 11), Santello et al. first
studied kinematic synergies of the humanhand in 1998. They
found that two synergies accounted formore than 80% of the
variance in hand posture during grasping of a set of 57 imag-
ined objects (12). Similar findings have been reported in tasks
involving object contact (13), reach-and-grasp (14), object
manipulation (15), the American sign language (16), and even
pianoplaying (17). For a comprehensive review, seeRef. 18.

Research suggests that this decrease in the hands’ opera-
tional degrees of freedommay enable simpler control (19–27).
Experimentally, it affords researchers a means to simplify ki-
nematic analysis. However, much of the existing research
focuses on simple grasping rather than object manipulation
or functional tool-use. To effectively restore motor function
in individuals with CVA or amputation, it is essential to study
hand manipulation in the context of tool use. This raises an
important question: do hand synergies differ between grasp-
ing andmanipulation? This paper aims to explicitly compare
grasp synergies andmanipulation synergies.

Understandinghumanmanipulationcanalso informadvan-
ces in robotic manipulation (28). Although robots are often
used for simple pick-and-place tasks (29–32), more recent
developments include limited forms of object manipula-
tion, such as finger gaiting (33–38) and object repositioning
within a grasp (39–41). However, few robots approach the
dexterity and versatility of humans (42–45; for further discus-
sion, see Refs. 28 and 46). Studying how humansmanipulate
tools during functional tasks could provide valuable insights
to improve robotic systems.

Robotic control becomes even more challenging when
manipulating deformable objects (47–52). A striking example
is wire-harnessing, amanufacturing process involving the as-
sembly of electrical cables into machinery such as aircraft
and automobiles. Although robots excel at assembling rigid
parts on an assembly line, the nonrigid nature of wire har-
nesses makes automation difficult (49). Consequently, wire-
harnessing remains a manual task, creating a bottleneck in
the assembly process. Interestingly, despite slower actua-
tion, communication, and computation speeds, humans
outperform robots in this task (53, 54). This paradox high-
lights the need to better understand how humans manipu-
late tools and deformable objects. To address this, we
studied wire-harnessing to gain insights into the principles
underlying humandexterity.

Motivatedby theutility of dimensionality reduction techni-
ques in studyinghandkinematics,we formulated twohypoth-
eses that compare both the number of reduced degrees of
freedomand the specific formsof these synergies:
1) The number of synergies underlyingmanipulation is the

same as those underlying reach-and-grasp.
2) The identity of synergies underlyingmanipulation is dif-

ferent from those underlying reach-and-grasp.

The first hypothesis arises from prior findings, particularly
that two synergies can account for more than 80% of the var-
iance in hand posture during grasping (12). The second hy-
pothesis builds on the extensive literature on grasp synergies,
highlighting the need to investigate hand manipulation dur-
ing functional tool use—an essential focus if we are to restore
motor function for individuals affected by CVA or amputa-
tion, rather than solely focusing ongrasping.

To test these hypotheses,wemeasuredhumanhandmotion
during twoexperiments, in thecontext ofwireharness installa-
tion. In thefirst experiment, subjects reached for andgrasped a
tool or object commonly used in wire harness installation. In
the second experiment, theymanipulated those tools to install
awireharness onamock electrical cabinet.Our results showed
that more synergies were required to competently describe
manipulation compared with reach-and-grasp. Moreover,
upon comparing the kinematic hand synergies across
reach-and-grasp and manipulation, we found that the dif-
ference was predominantly in the higher-order synergies.
These findings underscore the importance of studying
manipulation-specific synergies to inform therapeutic
technologies that restore hand function—providing a cru-
cial starting point for further research.

METHODS

Experimental Task

Seven adults (3 women and 4 men, aged 18–28 yr) with no
history of neurological or musculoskeletal problems partici-
pated in this study.All participantswere right-handdominant.
Before the study, participants were informed of the proce-
dures and providedwritten consent. The study was approved
by MIT’s Institutional Review Board (MIT IRB Protocol No.
1909000007).

Data Acquisition

Each subject performed two tasks. The first, referred to
as the Reach-and-Grasp Experiment involved reaching for,
grasping, and picking up tools. Subjects were instructed to
grasp each tool as if they were preparing to use it. The tools
included a pair of scissors, a zip tie, a screwdriver, a wire
harness with tied branched ends, and a wire harness with
untied branched ends. Each tool was grasped four times. The
second task, referred to as theManipulationExperiment, emu-
lated wire harnessing in a manufacturing setting. Subjects
used the tools from the first task to install a wire harness
onto amock electrical cabinet (Fig. 1). This task consisted of
five distinct steps. For each step, subjects were provided
with verbal instructions, written guidelines, and a booklet
containing a picture of the completed step. The steps were
as follows:
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1) Zip tie the branched ends of the wire harness at three
specified points.

2) Use the scissors to cut off the excess tips of the Zip ties.
3) Use the U-brackets, provided screws, and screwdriver to

screw the wire harness into the top of themock electrical
cabinet.

4) Route the wire harness through the hooks on the mock
electrical cabinet.

5) Plug the connector into the socket on themock electrical
cabinet.

These steps were chosen to simulate an assembly task that
requires both dexterous manipulation of a deformable object
and functional tool use.

Hand posture was measured during the tasks using a
CyberGlove (Virtual Technologies, Palo Alto, CA), a glove
with embedded sensors to track joint kinematics. The glove
recorded flexion at the distal interphalangeal (DIP), proximal
interphalangeal (PIP), andmetacarpophalangeal (MCP) joints
of the four fingers, and abduction (ABD) at the MCP joints,
defined as movement away from a neutral position with fin-
gers aligned and parallel. For the thumb, flexion at the MCP
and interphalangeal (IP) joints, abduction at the carpometa-
carpal joint, and rotation (ROT) about the trapeziometacarpal
joint axis were measured. In addition, palm arch (PA) and

wrist (W) pitch and yaw were tracked. Subjects wore a
CyberGlove on each hand during both experiments, but
only data from the right hand, reported by all participants
as dominant, are presented here. The glove sampled data
at�200Hzwith a nominal angular resolution of<0.1�.

In the Reach-and-Grasp Experiment, subjects beganwith
their hands flat on a table. After three seconds of data col-
lection, they were verbally instructed to grasp an object
placed 30 cm in front of their hand. Each trial lasted 15 s
and was repeated 20 times (4 trials per object for 5 objects).
In the Manipulation Experiment, subjects began in the
same starting position, with tools similarly placed 30 cm in
front of them. After three seconds of data collection, they
were instructed to begin a specific step of the wire harness
assembly task. Data collection ended when subjects com-
pleted the task and returned their hands to the starting
position. All subjects successfully completed the tasks
using their right hand as the primary tool-using hand.

To detect movement onset, we calculated average joint ve-
locity and smoothed it using a slidingwindowoffive samples.
Movement was identified when the smoothed displacement
exceeded 5% of its maximum value across the data set. In the
Reach-and-Grasp Experiment, the reach phase began at the
first detectedmovement and endedat the last detectedmove-
ment. The subsequent grasp phase concludedwith the end of
data collection. These phases were separated into two data-
sets: one containing the time-sampled measurements of 23
joint angles during reach, and the other during grasp. Each
data setwas further re-partitioned into 100bins for analysis.

Following the approach of Mason et al. (14), we analyzed
reachandgrasp together. So, the twodatasetswere recombined
to form the reach-and-grasp data of one subject during one
trial; the reach-and-grasp phases were evenly weighted within
the combined data set. In the Manipulation Experiment, data
collectionbeganaftermovementdetectionandcontinueduntil
the step was completed. To account for the longer and variable
durations of these steps, the data from each step was re-parti-
tioned into 1,000 bins. This equal partitioning ensured that
synergy extraction was not disproportionately influenced by
stepsofdifferingdurations.

Data Analysis

Emergence of kinematic hand synergies.
To extract kinematic hand synergies, we used the singular
value decomposition (SVD) method introduced by Mason
et al. (14) to analyze the evolving hand postures in both
tasks. In the Reach-and-Grasp Experiment, the data for
each subject were organized into a matrix X1;0eR4;000�23,
where columns represented 23 joint angles, and 4,000
rows stemmed from 200 bins � 5 objects � 4 trials.
Similarly, in the Manipulation Experiment, we computed
amatrixX2;0eR5;000�23, with rows representing 1,000 bins�
5 steps. Before applying SVD, data were centered by sub-
tracting the mean of each column (55). Singular value decom-
position computes the left and right singular vectors of amatrix.
So, SVD Xi; j

� � ¼ Ui; jRi; jVT
i; j produces linear combinations of

hand joint angles (i.e., kinematic synergies) in Vi;0eR23�23, their
temporal evolutions in U1;0eR4;000�4;000$ or U2;0eR5;000�5;000,
and an associated variancemeasure, the singular values, on the
principaldiagonal ofR1;0eR4;000�23 orR2;0eR5;000�23.

Figure 1. The mock electrical cabinet after the Manipulation Experiment.
The bottom half of the wire harness shows the zip ties used to secure its
branched ends (steps 1 and 2). The top half features u-brackets for screw-
ing the wire harness onto the cabinet (step 3). Red hooks were used to
route the wire harness (step 4), and a three-dimensional (3-D)-printed
socket above the rightmost hook allowed subjects to plug in the wire har-
ness connector (step 5).
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While this analysis compared the Reach-and-Grasp and
Manipulation Experiments as awhole, synergiesmay depend
on object geometry (i.e., tool-specific). To address this, we
conducted direct comparisons for specific tools. Data matri-
ces were created for the reach-and-grasp of the zip tie, scis-
sors, and screwdriver (X1,1, X1,2, X1,3 e R800�23) and their
corresponding manipulation steps (X2,1, X2,2, X2,3). As equal
weighting ofmanipulation steps was unnecessary, joint posi-
tion data were smoothed and downsampled to 60 Hz instead
of partitioning into 1,000 bins. SVDwas then applied to these
matrices. Comparisons focused on the zip tie (step 1), scissors
(step 2), and screwdriver (step 3); steps 4 and 5were excluded
as theydidnot involve direct use of tools fromtheReach-and-
GraspExperiment.

To measure the variance-accounted-for (VAF) by each ki-
nematic hand synergy, we used the singular values from the
diagonal of Ri,j. Specifically, VAF was calculated as the per-
centage of the square of a singular value relative to the total
sumof squared singular values inRi,j.

To determine whether manipulation and reach-and-
grasp tasks can be described by the same number of syner-
gies, we quantified the number of significant synergies fol-
lowing the method of Lambert-Shirzad and Van Der Loos
(56). Significant synergies were defined as those required to
achieve at least 90% VAF, with the addition of subsequent
synergies contributing less than 5% additional VAF. To
assess the effects of experiment and tool on the number of
significant synergies, a 2 (experiment) � 4 (tool) repeated-
measures ANOVAwas performed.

Comparison of kinematic hand synergies.
Next, we assessed how well synergies from the reach-and-
grasp task, commonly used to understand hand function (18),
explain variance in the manipulation task. Specifically, we
evaluated how the significant synergies identified in the
reach-and-grasp task describe the manipulation data. Using
singular value decomposition (SVD) as described previously,
we first identified the significant synergies from the reach-
and-grasp task,V1,j.Next, to evaluate their explanatorypower,
we projected the centered manipulation data, X2,j, onto the
subspace defined by these significant reach-and-grasp syner-
gies. This projectionwas computedas:

p2 on 1j ¼ X2;j � V1;j

where the subscript p2 on 1j denotes the projection of the
manipulation data onto the reach-and-grasp synergies. For
each projection, we calculated the variance of the manipu-
lation data explained by these reach-and-grasp synergies:

var p2 on 1jð Þ ¼
1

n� 1

X
p2 on 1j ;

where n is the number of projections in p2 on 1 (i.e., the num-
ber of data points).

The proportion of variance explained by these reach-and-
grasp synergies was then calculated to assess how well they
accounted for themanipulation task. This was done by divid-
ing the sum of variance explained by the projection onto the
significant reach-and-grasp synergies, var(p2 on 1), by the sum
of the eigenvalues of the manipulation synergies (i.e., the
square of the diagonal values ofR2,j). Note that here we report
the variance explained only by the significant reach-and-

grasp synergies. This analysis provides insight into howmuch
information aboutmanipulation can be gleaned from the syn-
ergies identified in the simpler reach-and-grasp task.

Although the analysis aforementioned compared the
size of the synergy space, it is also insightful to compare
the form of the synergy space. Thus, we calculated the co-
sine similarities between the reach-and-grasp synergies,
V1,j, andmanipulation synergies,V2,j, for each subject. This
involved computing the dot product of the two sets of syn-
ergies, resulting in amatrix, Cj, where each element Cj(a, b)
represents the cosine similarity between the ath reach-
and-grasp synergy and the bth manipulation synergy.
Here, we report the magnitude of these cosine similarities,
ranging from0 to 1.

C ¼ cos hð Þ ¼ jVT
1 � V2j

If synergies were the same irrespective of experiment (i.e.,
the data span the same hyperspace), we would expect a ma-
trix of cosine similarities, CeRm�m, with ones on the diagonal
and zeros otherwise. Conversely, if the reach-and-grasp syn-
ergies differed from the manipulation synergies (i.e., V1 =
V1), the resulting cosine similarity matrix would be asym-
metric. Specifically, C(a, b)= C(b, a) as the element in C(a, b)
provides the cosine similarity between the ath reach-and-
grasp synergy and the bth manipulation synergy while the
element in C(b, a) provides the cosine similarity between two
different vectors, the bth reach-and-grasp synergy and the
ath manipulation synergy. Additionally, in line with previous
studies (57–60) we highlight cosine similarities greater than
0.9 as particularly significant. Moreover, the values along the
diagonal of this matrix are referred to here as the synergy si-
militude—a measure of the degree of similarity between a
subject’s reach-and-grasp synergies, V1,j, and their manipula-
tion synergies, V2,j.

Ideally, we would aim to test the hypothesis that two syn-
ergy vectors are identical, V1,j ¼ V2,j, which would result in a
cosine similarity of 1, C(a, b) ¼ 1. However, cosine similarity
is upper bounded by unity. Consequently, its distribution
violates the implicit assumption of standard statistical test
(i.e., approximate normality), eliminating our ability to stat-
istically confirm equivalence.

Instead, to determine whether subjects’ reach-and-grasp
synergies differed from theirmanipulation synergies we tested
the hypothesis that the two synergy vectors were orthogonal, C
(a,b)¼0.Todo so,wegeneratedanull distributionby random-
izing the order of the features in themanipulation synergy vec-
tor and computing the cosine similarity between the reach-
and-grasp synergy and this randomizedmanipulation synergy.
This process was repeated 1,000 times to create a distribution.
We then calculated where the observed cosine similarity fell
within this distribution. Notably, here we computed
C ¼ cos hð Þ ¼ VT

1 � V2, ranging from �1 to 1. Thus, the null
distributionwas centered around 0, with a standard devia-
tion less than 1, which is important for hypothesis testing.
Finally, the reported P value represents the probability of
observing a cosine similarity as extreme as the actual
value, assuming no relationship (i.e., orthogonal synergies
C(a, b)¼0).

To assess whether synergy order affected synergy simili-
tude (i.e., values along the diagonal of the cosine similarity
matrix), we performed a linear regression between synergy
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order and similitude across all subjects. A significant effect
was identified if the slope of the regression line differed sig-
nificantly from zero (i.e., the 95% confidence interval of the
slope did not include zero).

Recognizing that the default synergy order, based on var-
iance-accounted-for, might be influenced by experimental
noise, we reordered themanipulation synergies to optimize
the analysis. Specifically, we reordered the columns of the
manipulation synergy matrix, V2,j, to maximize the sum of
the diagonal values (i.e., similitude) in the cosine similarity
matrix, C. Using this reordered matrix, we repeated the
tests aforementioned to determine whether reach-and-
grasp synergies differed from manipulation synergies and
evaluated the effect of synergy order on similitude. Finally,
we report the new rank of the manipulation synergies after
re-ordering.

All analyses were conducted in MATLAB 2022b. Source
data for this study are openly available at: https://github.
com/michaelwestjr/wire-harnessing-experiment-data and
https://doi.org/10.5281/zenodo.14532970.

RESULTS

Emergence of Kinematic Hand Synergies

Variance-accounted-for.
In general, manipulation required more synergies than reach-
and-grasp. Figure 2 shows the average variance-accounted-for
(VAF) by each synergy and their cumulative sum, while Fig. 3

illustrates the number of significant synergies for each tool
and experiment. These values range from one synergy, in
the case of one subject’s reach-and-grasp of the screw-
driver, to eight synergies, in the case of one subject’s
manipulation of the screwdriver. Despite this variability,
fewer synergies were needed than the full 23 degrees of
freedom (DOF) of the hand.

A two-way ANOVA (2 experiments � 4 tools) revealed
significant main effects of experiment (P ¼ 1.07e-10) and
tool (P ¼ 3.9e-06) on the number of significant synergies,
and a significant interaction effect (F3,48 ¼ 18.86, P ¼
3.62e-08).

Post hoc t tests showed that the number of significant syn-
ergies across all tools (M ¼ 5.43, SD ¼ 0.76) was greater than
for the scissors (M ¼ 3.64, SD ¼ 0.75, P ¼ 2.73e-06) and the
screwdriver (M ¼ 4.34, SD ¼ 2.44, P ¼ 0.0051). Similarly, the
number of significant synergies for zip tie (M ¼ 4.86, SD ¼
1.66) was greater than for the scissors (P ¼ 0.0013). Across
experiments, manipulation (M ¼ 5.61, SD ¼ 1.29) required
more significant synergies than reach-and-grasp (M ¼ 3.54,
SD ¼ 1.32, P ¼ 8.7e-13). Bonferroni-corrected comparisons
(aBonferroni ¼ 0.054/4 ¼ 0.0125) revealed that manipulation
required more significant synergies than reach-and-grasp
across all tools (P ¼ 8.93e-04), the zip tie (P ¼ 5.14e-04), and
the screwdriver (P ¼ 4.44e-07). However, no significant dif-
ference was observed for scissors (P ¼ 0.74). To summarize,
manipulation generally required higher degrees of freedom
than reach-and-grasp, except in the case of scissors.

Figure 2. Variance-accounted-for (VAF) by each synergy
averaged across subject for all tools (A), zip tie (B), scis-
sors (C), and the screwdriver (D). Lines show the cumula-
tive sum of the VAF. Error bars are ±1 standard deviation.
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Kinematic hand synergies.
As mentioned earlier, we used singular value decomposi-
tion to compute the synergies in our data set. The first
reach-and-grasp andmanipulation synergies computed for
each subject are shown in Fig. 4 for the All Tools data set

and in Supplemental Fig. S1 for the tool specific datasets.
Across all datasets, the first synergy was dominated by flex-
ion of the MCP and PIP joints, consistent with the power
grasp described in prior studies (2, 12, 18). This motion was
highly consistent across subjects. The second synergy,
primarily characterized by thumb rotation (Fig. 4 and
Supplemental Fig. S2), showed greater variability across
subjects. For the third synergy (Fig. 4 and Supplemental
Fig. S3) and higher-order synergies, substantial variation
among subjects precluded the identification of a consist-
ent physiological movement pattern.

Comparison of kinematic hand synergies.
Although Figs. 2 and 3 compare the size of the synergy sub-
spaces, they do not address their form. To compare the form
of synergies across the two experiments, we computed a co-
sine similarity matrix, with results shown in Supplemental
Fig. S4. Each row represents a tool subset, and each column
corresponds to a subject. The bottom row shows the average
similarity matrix across all subjects. Values greater than 0.9
are highlighted for clarity. Specifically, in the “All Tools”
data set, three of seven subjects exhibited a cosine similarity
greater than 0.9 for the first synergy comparison. For scis-
sors, two of seven subjects showed a cosine similarity greater
than 0.9 for the first synergy, and one subject for the third
synergy. No cosine similarities exceeding 0.9 were observed
for the zip tie or screwdriver. Moreover, despite the evident

Figure 3. Number of significant synergies in reach-and-grasp or manipula-
tion of each tool averaged across subjects. Error bars are ±1 standard devi-
ation. �Significant difference between the number of reach-and-grasp and
manipulation synergies.

Figure 4. The first, second, and third synergy extracted using the all tools dataset. Each line denotes a different subject. Each row corresponds to syn-
ergy order, while each column denotes synergies computed across either reach-and-grasp, V1,0, or manipulation, V2,0. Note, the abbreviations T, I, M, R,
and L refer to the thumb, index, middle, ring, and little fingers, respectively, while W refers to the wrist.
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individual differences, the average across subjects reflects
common features seen in all subjects: the first synergies
between experiments exhibited higher similarity, whereas
similarity decreased for higher-order synergies.

To test whether reach-and-grasp synergies differed signifi-
cantly from manipulation synergies, we tested the null hy-
pothesis, C(a, b) ¼ 0, for each synergy pair. A rejection of this
hypothesis indicates that the reach-and-grasp and manipula-
tion synergies span a similar subspace. Table 1 summarizes the
number of statistically similar synergy pairs of the same order
across subjects, based on the diagonal of the cosine similarity
matrix in Supplemental Fig. S4. As synergy order increased,
the number of statistically similar synergies decreased, high-
lighting thedivergenceofhigher-order synergies.

To assess the effect of synergy order on synergy similitude
(i.e., thediagonal of the cosine similaritymatrix),weperformed
a linear regression between synergy similarity and synergy
order across all subjects, including only significant synergies
(Fig. 3). The results are shown inFig. 5. In all cases, the regres-
sion slopes were negative and significantly different from
zero (All Tools: P¼ 2.1e-07; Zip tie/step 1: P¼ 0.009; Scissors/
step 2: P¼ 0.0055; Screwdriver/step 3: P¼ 0.0022). Although
the coefficients of determination were in the medium to low
range (All Tools: R2 ¼ 0.49; Zip tie/step 1: R2 ¼ 0.19; Scissors/
step 2: R2 ¼ 0.27; Screwdriver/step 3: R2 ¼ 0.19), all of the
regression models were significant when compared with a
constant model; hence, the significant slope. Thus, we con-
clude that synergy similarity decreasedwith synergy-order.

The default synergy order from SVD was based on the
variance-accounted-for (VAF), with higher-order synergies
explaining less variance. Although our similitude measure
focused on cosine similarity between synergies of the same
order, this approach did not ensure comparisons between
the most similar synergies across reach-and-grasp and
manipulation tasks. To address this, we reordered themanip-
ulation synergies tomaximize similitude with the reach-and-
grasp synergies, as shown in Supplemental Fig. S5. After reor-
dering, in the “All Tools” data set, three of seven subjects
exhibited a cosine similarity greater than 0.9 for the first syn-
ergy. For scissors, two of seven subjects showed a similarity
greater than 0.9 for the first synergy, and one subject for the
third synergy. No similarities above 0.9 were observed for the
zip tie or screwdriver. The number of statistically similar syn-
ergies is quantified in Table 2, where a higher incidence of
similarity along the diagonal was observed compared with
Table 1. This increase confirms that reordering improved the

alignment of reach-and-grasp and manipulation synergies,
emphasizing their shared subspaces.

Figure 6 shows the synergy similitude after reordering the
manipulation synergies. To assess the effect of the new syn-
ergy order on synergy similitude (i.e., the diagonal of the co-
sine similarity matrix), we performed a linear regression
between synergy similarity and synergy order across all sub-
jects, including only significant synergies. Unlike Fig. 5, neg-
ative regression slopes were significant only for the All Tools
(P ¼ 1.0e-05, R2 ¼ 0.49) and Screwdriver/step 3 (P ¼ 1.7e-03,
R2 ¼ 0.28) datasets, but not for the Zip tie/step 1 (P ¼ 0.05,
R2 ¼ 0.09) or Scissors/step 2 (P ¼ 0.42, R2 ¼ 0.026) datasets.
Note, here the coefficient of determination of these linear
regressions were in the medium range for the data whose
model did present a significant slope and in the very low
range, R2 < 0.1, for the data whose model did not present a

Table 1. The number of statistically similar synergies
upon comparing a subjects’ reach-and-grasp synergy
(syn) to their manipulation synergy (syn) of the same
order

Number of Statistically Similar Synergies

Syn 1 Syn 2 Syn 3 Syn 4 Syn 5 Syn 6 Syn 7 Syn 8

All Tools 7 6 6 4 3 2 0 0
Zip tie/Step 1 5 3 3 3 1 1 0 0
Scissors/Step 2 5 4 5 2 0 0 0 0
Screwdriver/Step 3 6 1 3 0 2 3 0 0

The total number of subjects was 7. For brevity, only the first 8
synergies are shown. No subsequent synergies were statistically
similar.

Figure 5. Synergy similitude (i.e., the diagonal of the cosine similarity ma-
trix) across participants computed across each tool. �Significant slope.

Table 2. The number of statistically similar synergies
upon reordering the columns of the manipulation syn-
ergy (syn) matrix to maximize similitude (i.e., the diagonal
of the cosine similarity matrix)

Number of Statistically Similar Synergies after Reordering

Syn 1 Syn 2 Syn 3 Syn 4 Syn 5 Syn 6 Syn 7 Syn 8

All Tools 7 7 7 6 7 5 0 0
Zip tie/Step 1 7 7 7 4 5 5 2 0
Scissors/Step 2 6 6 6 4 2 0 0 0
Screwdriver/Step 3 7 7 7 4 6 6 1 1

The total number of subjects was 7. For brevity, only the first 8
synergies are shown. No subsequent synergies were statistically
similar.
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significant slope. This may indicate that there was similarity
between the reach-and-grasp and manipulation synergies,
especially in the handling of the zip tie and scissors. However,
in all tools and screwdriver data these results suggest that syn-
ergies clearly present in manipulation may not be as preva-
lent in reach-and-grasp.

Figure 7 illustrates how reordering the manipulation syn-
ergies increased the incidence of statistically similar syner-
gies (Table 2). The dashed black line represents no change
in synergy order after reordering. Synergies above this line
decreased in rank, becoming more dominant in manipula-
tion, whereas those below the line increased in rank,
becoming less dominant. Notably, higher-order synergies
often shifted to lower ranks (more dominant) in manipula-
tion, whereas lower-order synergies shifted to higher ranks
(less dominant), particularly in the screwdriver data set.
This indicates that synergies considered insignificant in
reach-and-grasp gained importance during manipulation
tasks, highlighting the functional differences in synergy
use between the two tasks.

Although informative, the cosine similarity analysis does
not directly address how well the reach-to-grasp synergies
explain the manipulation data. To explore this, we projected
the manipulation data onto the significant reach-and-grasp
synergies and calculated the variance they explained (VAF).
Table 3 compares the VAF of manipulation data projected
onto reach-and-grasp synergies with the VAF explained by
the manipulation synergies themselves (values in parenthe-
ses). Across all subjects and tasks, the reach-and-grasp syner-
gies consistently explained less variance in manipulation

data, particularly in dexterous tasks like tying a zip tie or
using a screwdriver. For instance, in subject 4, the reach-
and-grasp synergies explained only 0.21 and 0.47 of the var-
iance for the zip tie and screwdriver tasks, compared with
0.93 and 0.90 by the manipulation synergies. These findings
suggest that while reach-and-grasp synergies can capture some
aspects of manipulation, they fall short in tasks requiring fine

Figure 6. Synergy similitude (i.e., the diagonal of the cosine similarity
matrix) across participants computed across each tool, upon reordering
the columns of the manipulation synergy matrix to maximize similitude.
�Significant slope.

Figure 7. Manipulation synergy ranks after reordering to maximize simili-
tude with the reach-and-grasp synergies (i.e., the diagonal of the cosine
similarity matrix). The gray line represents the average, and error bars
denote the standard deviation. Red dots indicate data points, with larger
dots representing repeated values. The dashed black line indicates no
change in rank; values above it suggest that synergies less dominant in
reach-and-grasp became more dominant in manipulation, whereas values
below it suggest the opposite.

Table 3. VAF by projecting the manipulation data onto
the reach-and-grasp synergies, presented for all tools
and specific tool-task pairings (Zip tie/Step 1, Scissors/
Step 2, and Screwdriver/Step 3)

VAF by Projecting the Manipulation Data onto the Reach-and-Grasp Synergies

Subject All Tools

Zip tie/

Step 1

Scissors/

Step 2

Screwdriver/

Step 3

1 0.81 (0.91) 0.49 (0.93) 0.61 (0.94) 0.34 (0.93)
2 0.80 (0.92) 0.60 (0.93) 0.81 (0.94) 0.47 (0.91)
3 0.81 (0.92) 0.76 (0.91) 0.84 (0.91) 0.27 (0.91)
4 0.78 (0.93) 0.21 (0.93) 0.79 (0.90) 0.47 (0.90)
5 0.86 (0.91) 0.62 (0.90) 0.78 (0.91) 0.35 (0.93)
6 0.70 (0.91) 0.40 (0.90) 0.66 (0.93) 0.48 (0.91)
7 0.73 (0.92) 0.75 (0.93) 0.74 (0.92) 0.67 (0.92)
Average 0.78 (0.92) 0.55 (0.92) 0.75 (0.92) 0.44 (0.92)

Values in parentheses indicate the VAF explained by the signifi-
cant manipulation synergies themselves, as highlighted in Fig. 2
(red). VAF, variance accounted for.
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motor control, highlighting the need to study more complex,
functionalmanipulation tasks.

DISCUSSION
In this study, we tested two hypotheses: 1) the number of

synergies underlyingmanipulation is the sameas thoseunder-
lying reach-and-grasp, and2) the identity of synergiesunderly-
ing manipulation is different from those underlying reach-
and-grasp. We found that more synergies were required to
competently describe the manipulation data than the reach-
and-grasp data. Moreover, upon comparing the kinematic
hand synergies across reach-and-grasp and manipulation, we
found that the difference was predominantly in the higher-
order synergies. After reordering the manipulation synergies
tomaximize similitude (i.e., the diagonal of the cosine similar-
itymatrix), we found that synergies clearly present inmanipu-
lationmaynotbe asprevalent in reach-and-grasp.

Emergence of Kinematic Hand Synergies

Our analysis did confirm a reduction of the hand’s opera-
tional degrees of freedom. The first three synergies accounted
for greater than 75%of the variance in both experimental tasks
(Fig. 2). This value is consistentwithwhat has been reported in
prior literature (12, 14–16, 18) and cannot be explained solely by
biomechanical constraints (15). Thus, we conclude that this
simplified kinematic analysis can continue to be useful to
understand aspects of motor control of the human hand
performing a functional task and is not solely a function of
biomechanics.

Consistent with much of the synergy work first intro-
duced by Santello et al. (12), the first synergy, in both of the
experimental tasks presented here, was dominated by flex-
ion of the MCP and PIP joints (Fig. 4 and Supplemental Fig.
S1). This power grasp synergy (2) has been observed across
several experiments that studied hand posture in grasping,
both with and without contact (13, 14); and even including
signing inAmerican sign language (16).

Our analysis confirmed a reduction in the hand’s opera-
tional degrees of freedom in both experiments. However,
more synergies were required to account for the same var-
iance in the Manipulation Experiment than in the Reach-
and-Grasp Experiment (Fig. 3), with statistically significant
differences observed for all tools, the zip tie, and the screw-
driver. Interestingly, this was not the case for the scissors,
likely because the object’s constraints limited finger and
thumb motion, reducing variability. Since greater variabil-
ity in motion typically increases the number of significant
synergies, the constrained motion required by scissors
likely explains the lack of a statistical difference between
the number of significant synergies in reach-and-grasp and
manipulation. We want to highlight that the intuitiveness
of this result reassured us that despite the challenge of
noisy data and complicated processing, our analysis did
not detect differenceswhennonewere to be expected.

Unlike the scissors, in the other tools studied here, more
synergies were required to account for the same variance in
theManipulation Experiment than in the Reach-and-Grasp
Experiment (Fig. 3). For instance, using a screwdriver
involves repeated grippingand turningmotions, often requir-
ing finger gaiting, whereas manipulating a zip tie demands

fine-grained finger control rather than a simple power grasp
(synergy 1). The greatest difference in synergies was observed
for screwdriver tasks, which require multiple re-grasps and
finger gaiting, followed by the zip tie. Together, these results
suggest that a greater variety of hand postureswas usedwhen
manipulating a tool or object than when reaching for and
grasping it, unless that tool greatly constrained handmotion.
This may be because manipulation requires more variable
hand kinematics than reach-and-grasp, which also suggests
that high-order synergiesmay bemore important inmanipu-
lation than in reach-and-grasp. Intuitively, thiswould be con-
sistent with the need for high dexterity in tasks that require
objectmanipulation.

Reach-and-Grasp versus Manipulation Synergies

As reach-and-grasp synergies have historically informed
prosthetic design and rehabilitation protocols, we set out to
determine howwell these synergies account formanipulation
data. To address this,weprojectedmanipulationdata onto the
significant reach-and-grasp synergies and calculated the var-
iance they explained (Table 3). The results clearly demon-
strate that the subspace defined by the reach-and-grasp
synergies is not sufficient to describe the manipulation data.
In all cases, the reach-and-grasp synergies accounted for sig-
nificantly less variance in the manipulation tasks than the
synergies derived directly from manipulation data. This dis-
crepancy was particularly pronounced in fine manipulation
tasks, such as tying a zip tie or using a screwdriver, which
require complex and dexterous motions. These findings sug-
gest thatwhile reach-and-grasp synergies capture someessen-
tial aspects of hand function, they are insufficient to fully
describe the more intricate demands of manipulation. This
understanding is crucial for two key reasons. First, it high-
lights the importance of studying manipulation tasks that
require fine dexterity to inform rehabilitation protocols. This
will help ensure that future rehabilitation protocols are func-
tionally relevant and tailored to real-world activities. Second,
further study of the dissimilarities between themanipulation
and reach-and-grasp spaces can inform the development of
robotic control algorithmsaimedat replicatinghumandexter-
ity (28, 46). Ultimately, understanding these nuanced differ-
ences between the subspaces of control for manipulation
tasks and reach-and-grasp can both help improve rehabilita-
tion protocols aimed at restoring hand function and decrease
thegapbetweenhumanand robotdexterity.

With this in mind, we aimed to directly compare the
synergies between reach-and-grasp and manipulation
tasks (Supplemental Fig. S4), focusing on the diagonal values
of the similarity matrices—the synergy similitudes. As
shown in Fig. 5, synergy similarity decreased with increas-
ing synergy order. These differences in higher-order syner-
gies between reach-and-grasp andmanipulation tasks suggest
that current knowledge of higher-order kinematic synergies
may not reliably apply to functional tasks. Given that higher-
order synergies become significant during manipulation
(Fig. 3), further investigation of these differences is essential.

It is important to note that higher-order synergies are often
dismissed because they do not explain a significant portion of
the variance in the data, and their minimal contribution is
typically considered indistinguishable from noise (i.e., they
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arenear the “noisefloor”). In our data, thefirst synergy consis-
tently representedapower grasp,whereashigher-order syner-
gies showed significant differences between reach-and-grasp
and manipulation tasks. Often overlooked as experimental
error or noise, these synergies can obscure critical distinctions
between reach-and-grasp and manipulation. Our findings
align with the study by Yan et al. (61), who demonstrated that
low-variance principal components exhibit structured, condi-
tion-specific variations rather thanmere noise. Here, we align
with their assertion that higher-order synergies can provide
critical insights into the complexities ofhumanmotor control.
In this study,we have elucidated thesedistinctions by refrain-
ing fromdismissinghigher-order synergies.

Investigating the diagonal values of the similarity matri-
ces in Supplemental Fig. S4 assumes that synergies of the
same order are identical, though this need not be the case.
In fact, in Supplemental Fig. S4, several off-diagonal com-
parisons show statistically similar synergies. To better
assess similarity between reach-and-grasp and manipula-
tion synergies and address potential concerns about spuri-
ous rankings, we reordered the manipulation synergies in
Supplemental Fig. S5 to maximize diagonal cosine similar-
ities (Fig. 6), resulting in an increased incidence of statisti-
cally similar synergies on the diagonal (Table 2). Figure 7
shows that higher-order manipulation synergies often shifted
in rank—becoming more significant—whereas lower-order
synergies became less important, especially in screwdriver
use. This reflects the shift in functional demands: grasping a
screwdriver involves a power grasp (synergy 1), whereas using
it requires tool rotation and finger-gaiting motions, empha-
sizing higher-order synergies. These findings highlight the
importance of typically overlooked higher-order reach-and-
grasp synergies, which, despite being near the “noise floor,”
play a critical role inmanipulation.

Limitations

Because the manipulation experiment inherently included
a reach component, it was not possible to completely decou-
ple the two groups of synergies. Although reach data contrib-
uted to both groups, the reach portion of the first experiment
averaged 4.75 s, compared with 92.73 s for the full manipula-
tion trials. Thus, the synergies derived from the manipula-
tion data were minimally influenced by the reach motion.
Nonetheless, our results showed clear differences between
the reach-and-grasp and manipulation synergies; inclu-
sion of reach would make the synergies more similar, not
more distinct.

Singular value decompositionwas used to extract the kine-
matic hand synergies. This is only one of many dimensional-
ity reduction techniques and suffers flaws; however, it is the
most commonly used in kinematic data (18). As a data-driven
approach, it is susceptible to data preprocessing effects. We
aimed to mitigate this by following the guidelines presented
byWest et al. (55). Namely, we centered the data by removing
themean; this ensured thatwedidnot obtain adominantfirst
synergy that only served to center the data and thereby
reduced the number of significant synergies (55). Moreover,
we chose to bin the data in a manner that was least likely to
change the variance within the data; doing so would have
resulted in a synergy indicating related DOFs but without
accurate quantification of their co-variation (55). Although it

is possible that our results may have been influenced by the
data preprocessing and processing methods, reasonable
assumptions consistent with prior literature were made in
the synergy extractionmethods.

Our goalwas to test thehypothesis that two synergy vectors
were the same, V1,j ¼ V2,j. To compare reach-and-grasp and
manipulation synergies, we calculated their cosine similarity,
a metric ranging from �1 to 1. Since synergies with a cosine
similarity of�1 or 1 span the same subspace, we reported the
magnitude of the cosine similarity, ranging from 0 to 1.
However, because cosine similarity is bounded by unity, its
distribution violates the assumption of normality required
for standard statistical tests. Therefore, we tested the null
hypothesis that the two synergy vectors were orthogonal,
Ci,j ¼ 0. It is important to emphasize that falsification of this
hypothesis strictly tells us that the two compared synergy
vectors do not span completely orthogonal subspaces. Thus,
the reported similar synergies in Tables 1 and 2 do not neces-
sarily span the same subspace; rather, they do not span or-
thogonal subspaces. Due to these limitations, we cannot
statistically confirmwhether the compared vectors are equal.
Thus, in line with other literature (57–60), the authors have
highlighted cosine similarity greater than0.9.

In this study, muscle dynamics andmuscle synergies were
not studied. Asmuscles are the human’s actuators, one could
argue that we cannot draw conclusions about the human
motor controller. However, considerable insight has been
gained from studying purely kinematic hand motion (12–16,
18, 27, 62–68). Moreover, studies of adaptation to visual and/
or mechanical perturbation have shown that kinematics
dominate humanmotion planning (69, 70). Studying muscle
dynamics during manipulation is important and should be
pursued further; however, one should not ignore the insights
that canbe gained fromkinematics.

In the literature, a persistent question remains regarding
the neural basis of synergies: are synergies the result of physi-
cal constraints and biomechanics, or are they a product of
neuromotor control strategies? This question is critical to
determine whether synergies serve as a simplifying control
technique inmotor coordination (18, 71–73). In this study, we
analyzed kinematic variance across two tasks but did not ex-
plicitly separate “good” variance—variation that does not
affect task performance—from “bad” variance, which does
(74). This limitation may influence synergy interpretation,
as our analysis did not account for constraints imposed by
tools or the external environment. Amore refined approach
could involve projecting measured variations onto the tan-
gent surface of these constraints, isolating intrinsic motor
control strategies from extrinsic task-specific influences.
For instance, if a subject is required to slide their fingertip
along a surface, the surface’s shapewould impact the recorded
finger kinematics and resultant singular value distribution.
However, projecting the measured variation onto the plane
tangent to the constraint couldyield abetter estimate of intrin-
sicmotor control strategies, isolating them fromextrinsic task-
specific adaptations. Similar work by Sharma (75) provides a
foundation for such methods, which could be extended to the
functionalmanipulation tasks studied here. Future research
should develop analytical techniques to account for these
factors, improving synergy analysis in complex, constrained
manipulation tasks.
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Implications

Synergies have been used as a basis for rehabilitation post
cerebral vascular accident (76–80) and have informed the
design of several rehabilitation devices (76, 81–84). Although
it may seem intuitive that more and distinct synergies are
required for manipulation than for reach-and-grasp, many
rehabilitation efforts have traditionally focused on grasp syn-
ergies for functional recovery. This study highlights the criti-
cal distinction between synergies for reach-and-grasp and
those for manipulation, underscoring the need to design
rehabilitation tasks that address the demands of tool-use and
daily activities. For upper limb reaching, the advancement of
robotic rehabilitation techniques has demonstrated greater
effectiveness and better cost efficiency than standard patient
care (85–88), largely due to insights into innate humanmotor
function, as explored here. Ultimately, if we want to restore
hand function to those who have lost it, kinematic hand syn-
ergies can be useful; however, they must be studied in the
context of activities of daily living, which often require func-
tional tool-use.

The results also have important implications for prosthetic
design.Many prostheses simplify design by leveraging lower-
order grasp synergies (18, 89–95). However, this study high-
lights the significance of higher-order synergies for tool-use,
emphasizing the need to account for these distinctions in
prosthetic design. Reliance solely on low-order synergiesmay
fail to capture the full range of movements required for func-
tional tool-use.

Are synergies an epiphenomenon?
The concept of synergies has a venerable history in themotor
neuroscience and robotics literatures [for review see Santello
et al. (18)]. Confining attention to kinematic synergies, as
described earlier they may be defined by a time-invariant
map /(·)from a lower-dimensional control input deRm to a
higher-dimensional configuration space h e Rn, where n > m,
such that h(t) ¼ /(d(t)). Numerical methods such as singular
value decomposition may be applied to experimental data to
identify a linear approximation to the map /(·). Is this con-
cept insightful?

For example, any single action necessarily follows a path
p(·) in configuration space. A highly skilled or well-learned
action is likely to be repeatable such that every replication of
the action follows the same path in configuration space. That
path defines the coordinate of a one-dimensional (albeit
likely nonlinear) subspace to which the task is confined.
Displacement along thatpath seR1 definesa single coordinate.
Its time-history s(t) may serve as a control input to define the
configuration-space trajectory h(t) ¼ p(s(t)) used for the task.
Therefore p(·) defines a synergy. By this reasoning, synergies
are anecessary consequence of skill.

Moreover, distinct actions likely follow distinct paths q(·),
r(·) etc. and each of these also defines a synergy. As a result,
wemay predict that synergieswill varywith subject, task, and
object, consistent with our findings and those of previous
researchers (12, 13, 16, 17, 67). Thus, wemay conclude that the
dimensionality of a single highly learned action should be
one. Imperfect execution or noise might lead to an apparent
dimensionality greater than one. Those additional dimen-
sions may be useful, for example, to absorb inevitable motor

variability, but any additional dimensions donot describe the
task.

Moreover, the linearization implicit in the use of numerical
methods such as singular value decomposition may also lead
to an apparent dimensionality greater than one. This may
motivate the application of nonlinear approaches in future
work.

Nonetheless, this reasoning does not challenge the biologi-
cal reality of synergies. Learning a skill is loosely analogous to
solving an optimization problem and is costly in time and
physical and mental effort. Storing, and retrieving, learned
patterns in the form of synergies may be a way to avoid the
need to re-optimize on every execution. But there’s no free
lunch: we should expect that learning a task that requires a
configuration-space path orthogonal to p(·), q(·), r(·) etc. will
bemuchharder than learning a task that interpolates between
these subspaces. That, too,has been reported (73, 96, 97).

A collection of skilled behaviors need not use all regions of
configuration space but may be confined to a subspace
spanned by the synergies p(·), q(·), r(·) etc. The key to iden-
tifying this skilled subspace is to study tasks that require
the true versatility of human manipulation—such as wire-
harnessing.

Conclusions

This study sought evidence of kinematic hand synergies
duringwireharness installation—a task that involvesmanipu-
lation of complex tools and objects. Human handmotion was
measured during two experiments: 1) reaching for and grasp-
ing a tool or object and 2) manipulating those objects. In both
experiments, a reduction of the operational degrees of free-
dom was observed (i.e., synergies). Moreover, we found that
manipulation of a tool generally required more significant
synergies than grasp of that same tool. Nonetheless, consist-
ent with previous literature on kinematic hand synergies, the
first synergy participated in power grasp, and the second syn-
ergy was dominated by thumb rotation. However, upon com-
paring reach-and-grasp with manipulation, we found that
synergy similarity decreasedwith synergy-order. Considering
that higher-order synergies become significant duringmanip-
ulation, it is important that we investigate these differences;
this study serves as a point of entry to understanding them.
Investigation of the human hand during functional object
manipulation may lead to better prosthetic hand design, and
hand rehabilitation techniques. If we want to restore hand
function to those who have lost it wemust study handmanip-
ulationbeyondgrasping.
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