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Abstract

Humans possess a unique ability to manipulate tools, facilitated by the dexterity of
our hands. Unfortunately, millions lose this capability annually due to conditions like
limb amputation or Cerebral Vascular Accident. Robotic rehabilitation technologies,
including prosthetics and exoskeletons, aim to restore motor function. However,
understanding human control strategies is crucial for effective implementation.
Unfortunately, studying humans is challenging due to their inherent complexity.
Simple models can help untangle this complexity. This thesis delves into the role
of simple models in analyzing human neural motor control and perception through
the study of upper-limb motor control and hand manipulation.

Specifically, this thesis aims to develop a descriptive understanding of human
manipulation in unimpaired subjects. To achieve this, we first delve into a
common simplification of human hand manipulation—the presence of kinematic
hand synergies—and stress the importance of studying functional hand manipulation
beyond simple grasping. Secondly, we present findings from a motor control
study that introduces a simple mathematical model, emphasizing mechanical
impedance, that competently describes how humans manage physical interaction.
Thirdly, we underscore the significance of mechanical impedance through a
perceptual study which highlighted humans’ robust ability to perceive limb stiffness.
Lastly, we introduce a metric that can objectively quantifying manipulation
complexity, potentially broadening researchers’ scope in studying human complex
manipulation. The insights gained from this work have far-reaching implications,
potentially enhancing existing robotic and rehabilitation technologies and guiding
the development of new ones.

In a field dominated by large complex models fed by big data, this thesis highlights
the value of conducting the basic science research required to uncover aspects of
human motor control.

A video presentation of this thesis can be found at:
https://www.youtube.com/watch?v=u2eCJHqEGww
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Chapter 1

Introduction

“Everything should be made as simple as possible, but not simpler.”

–Albert Einstein

1.1 Current State-of-the-Art in Robotics

As of the writing of this thesis, the robotics community has entered a new era,

with a keen interest in enhancing robot dexterity through advancements in artificial

intelligence (AI) and machine learning (ML). Particularly, there’s been a notable

shift towards the development of various imitation learning techniques, where robots

strive to replicate human behavior [Hussein et al., 2017]. In such tasks, robots

learn the mapping between observations and actions, commonly known as behavior

cloning [Pomerleau, 1988]. This approach has enabled robots to acquire a range

of skills beyond basic manipulation tasks like pick-and-place operations [Brohan

et al., 2022,Padalkar et al., 2023] to more complex tasks involving bimanual mobile

operation such as sauteing and serving a piece of shrimp [Fu et al., 2024]. Particularly

noteworthy is the work by researchers at the Toyota Research Institute, who have

leveraged advancements in generative AI to teach robots new manipulation abilities

within a single afternoon [Chi et al., 2023,Chi et al., 2024]. A demonstration of their

impressive work can be viewed on YouTube. While this work is quite impressive these
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large learning models often suffer from a lack of interpretability, limiting the insight

that can be derived.

1.2 A Case for the Study of Human Motor Control

1.2.1 The Paradox of Human Performance

Despite the rapid advancements in robotics led by the AI revolution, humans

consistently outperform robots in tasks requiring physical interaction. This

discrepancy underscores a fascinating dichotomy; humans, equipped with what might

be considered inferior ‘wetware’ and ‘hardware’, excel at dexterously manipulating

complex objects and simultaneously managing their own high degree-of-freedom

bodies [Kandel et al., 2000a, Hogan and Sternad, 2012]. The limitations of current

robotic technologies was highlighted in the DARPA Robotics Challenge. There,

robots struggled with tasks trivial for humans, such as walking in sand, traversing

a door, and turning a steering wheel [Banerjee et al., 2015, Knoedler et al., 2015].

These scenarios highlight the paradox of human performance: despite seemingly

inferior biological mechanisms, humans possess an unparalleled ability to perform

manipulation tasks that require physical interaction.

One of the most pronounced differences between human and robot ‘wetware’ and

‘hardware’ lies in the speed at which humans and robots operate and communicate.

Human neural pathways and muscles operate at a significantly slower pace compared

to computer processors and robotic actuators. For instance, human muscles contract

at frequencies below 10 Hz, a stark contrast to robotic actuators which can achieve

movements at frequencies well beyond 100 Hz [Kandel et al., 2000a, Hogan, 2017].

Additionally, human communication, facilitated by the transmission of neural signals,

is approximately six orders of magnitude slower than robot communication, where

electrons travel at speeds of 108 m/s compared to the 102 m/s speed of neuron

signal transmission [Kandel et al., 2000a, Hogan, 2017]. Feedback delays present

another stark contrast; the human trans-cortical loop incurs feedback delays greater
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than 100 ms, whereas robotic systems can often boast feedback delays of less than

1 ms [Kandel et al., 2000a,Hogan, 2017]. These disparities highlight the mechanical

and communicative efficiencies that robots possess over humans, emphasizing the

paradoxical nature of human superiority in tasks involving physical interaction.

Another area where humans seemingly face a disadvantage is in managing

the “curse of dimensionality” [Bellman, 1966]. This principle posits that control

complexity increases exponentially with the addition of more degrees of freedom.

Despite this, humans exhibit a remarkable ability to consistently manage their

musculoskeletal system, which consists of over 200 joint degrees of freedom and

600 muscle actuators [Kandel et al., 2000a]. This capability suggests that humans

employ highly efficient, yet currently not fully understood, strategies to overcome the

challenges posed by high-dimensional control spaces.

This performance gap between human and robotic capabilities suggests that

humans may employ simplifying control techniques to manage physical interactions –

a concept that roboticists have yet to replicate successfully. The study of human

motor control, learning, and perception is crucial in unraveling these underlying

control mechanisms. By delving into the complexities of how humans achieve

such dexterous manipulation, we can uncover insights that not only advance our

understanding of human biology but also inform the development of more capable

and dexterous robots. This thesis makes strides towards identifying these underlying,

simplifying control techniques in an effort to bridge this gap.

1.2.2 Rehabilitation Robotics

The study of human motor control holds significant relevance for the field of

rehabilitation robotics, including therapeutic robotics, assistive robots, exoskeletons,

and prostheses. A hallmark of human performance is our remarkable ability to

manipulate objects and tools with our hands, enabling us to interact effectively

with the world around us. Unfortunately, each year approximately 15 million people

worldwide and around 800,000 Americans suffer from loss of motor function due to

cerebral vascular accident (CVA) (i.e. stroke) [Virani et al., 2020], with hand function
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often being the most severely affected and experiencing the poorest recovery rates.

Additionally, in the United States alone, there are approximately 185,000 amputations

annually [Ziegler-Graham et al., 2008]. These stark statistics emphasize the pressing

need for effective rehabilitation solutions. Consequently, extensive investments have

been made in therapeutic devices (amounting to approximately $53 billion [Tsao et al.,

2022]) and prosthetic devices (valued between $8-12 billion [Ziegler-Graham et al.,

2008]) to address these challenges.

There has been demonstrated effectiveness and cost efficiency of robotic

rehabilitation techniques over standard patient care in tasks like upper limb reaching

[Fasoli et al., 2004, Krebs et al., 2003, Riener et al., 2005]. However, despite

these promising developments the widespread adoption of such technologies remains

limited, signaling a need for further innovation and refinement [Balasubramanian

et al., 2010,Maciejasz et al., 2014]. Challenges hindering the success of rehabilitation

robotics include high costs, the complexity of human-machine interfaces, and a general

lack of customized treatment options that cater to individual patient needs [Calabrò

et al., 2020,Qassim and Wan Hasan, 2020]. For review see, [Yue et al., 2017,Frolov

et al., 2018,Li et al., 2017,Liu et al., 2022].

More importantly, a fundamental challenge in rehabilitation robotics is the lack

of a comprehensive understanding of the control mechanisms humans use to produce

movement [Rodgers et al., 2019]. This gap in knowledge raises a critical question: if

we do not fully understand how humans naturally produce movement, how can we

effectively reteach or restore lost motor functions? The study of human motor control

serves to bridge this gap, providing the foundational knowledge necessary to develop

robotic systems that can more accurately mimic or support human movements. By

unraveling the complexities of how humans learn, control, and adapt movements,

researchers can create rehabilitation robots that offer more natural and effective

assistance or replacement for lost functions.

In conclusion, the intersection of human motor control study and rehabilitation

robotics holds the potential to revolutionize the way we approach rehabilitation

for motor impairments. By grounding the development of therapeutic robotics
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in a thorough understanding of human motor functions, we pave the way for

innovations that can significantly improve the quality of life for those affected by

CVA, amputation, and other conditions that impair motor function. This thesis

takes a step in that direction.

1.3 A Case for Simple Models

In the domain of robotics, the inclination towards leveraging large, complex models

for understanding physical interactions has been primarily driven by the inherent

challenges these interactions present. While these sophisticated models undoubtedly

offer thrilling results [Chi et al., 2023,Chi et al., 2024,Fu et al., 2024], their complexity

often obscures their interpretability, making them less accessible for intuitive

understanding. This observation underscores the importance of embracing simpler

models, particularly when the aim is to extract immediate, easily understandable

insights.

The pursuit of simple models is further justified when considering the mechanisms

of human motor control. It is reasonable to assume that humans do not engage

in detailed, conscious modeling of their interactions with the environment during

routine tasks. Taking the everyday activity of opening a door as an illustrative

example, the mechanical requirement is to apply a force normal to the door’s surface, a

direction that dynamically changes with the door’s movement. Despite the complexity

implied by this interaction, the cognitive process for most individuals does not involve

conscious calculation of these mechanics. Instead, humans intuitively grasp and pull

the door handle in a direction that feels approximately correct. This process, largely

automatic and devoid of explicit modeling, exemplifies the humans’ innate ability

to efficiently navigate complex physical interactions through intuitive understanding

and execution.

The research methodology underlying the studies in this thesis, illustrated in

Figure 1-1, follows a systematic approach to discerning the simplifying control

mechanisms present in human motor tasks. It commences with a well-founded
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Figure 1-1: The author’s research methodology used throughout this thesis to
uncover simplifying control mechanisms present in human motor tasks.

hypothesis, guiding the design of tailored behavioral studies aimed at investigating

specific aspects of human motor control. These studies entail collecting data,

primarily kinematics and occasionally kinetics, as participants engage in meticulously

crafted experimental tasks. Subsequent analysis involves a thorough examination

of the collected data to unveil underlying movement patterns and principles,

accomplished through the development and application of simple yet effective models

prioritizing clarity and interpretability. The final phase applies principles of control

theory to further scrutinize observed behaviors, enabling inference of aspects of

the internal human motor controller. By comparing modeled behavior with actual

human performance, discrepancies and alignments are identified, shedding light on

the internal processes governing motor control. This iterative process of hypothesis

formulation, experimental investigation, modeling, and theoretical analysis forms the

foundation of our approach to unraveling the simplifying controllers inherent in human

motor tasks.

1.4 A Brief Literature Review

In this section, we will briefly highlight key discoveries in human motor control that

have uncovered competent, simplifying models. Specifically, we will discuss synergies

and dynamic primitives, as these concepts are important themes in this thesis.
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1.4.1 Synergies

As mentioned earlier, a difficulty of managing physical interaction is the control of the

complex, high degree-of-freedom system that is the human musculoskeletal system,

which consists of 200+ joint degrees-of-freedom and 600+ muscle actuators [Kandel

et al., 2000b, Bellman, 1966]. In tackling the complex nature of human motion,

Bernstein formulated what is known as the Degrees of Freedom Problem which stated

that [Bernstein, 1967,Bernstein, 2014]:

“It is clear that the basic difficulties for coordination consist precisely in

the extreme abundance of degrees of freedom, with which the [nervous]

centre is not at first in a position to deal.”

This quote highlights the complexity inherent in controlling movement, positing

that such control might not involve managing each joint independently. Instead, he

suggested that movements are orchestrated in a more coordinated and integrated

manner, reducing the system’s overall complexity. This foundational idea paves the

way for understanding how synergies can streamline hand movement control.

A synergy, in this context, is defined as a coordinated action whereby multiple

degrees of freedom are regulated collectively to produce movement. Given the

coordinates of the human action, 𝜃, it is likely that many of these degrees of freedom

are controlled simultaneously. If so, there exists a mapping such that

𝜃 = 𝜑(𝛿) (1.1)

where 𝛿(𝑡) is a command that has fewer dimensions than 𝜃(𝑡), and 𝜑(·) is a mapping

between 𝛿 and 𝜃. Direct access to 𝛿 is not immediately available. However, assuming

it exists, the mapping is often found via dimensionality reduction techniques such

as principal component analysis [Smith, 1988], singular value decomposition [Mason

et al., 2001, West et al., 2023], and non-negative matrix factorization [D’avella and

Tresch, 2001,Tresch et al., 2006].

Depending on the domain in which the human data was collected, we can extract
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neural synergies [Cheung and Seki, 2021, Santello et al., 2013], muscular synergies

[Cheung et al., 2009,D’avella and Tresch, 2001,Weiss and Flanders, 2004,Ting and

McKay, 2007,Yang et al., 2019], or kinematic synergies [Santello et al., 1998,Todorov

and Ghahramani, 2004, Mason et al., 2001]. At the muscle level, synergies reflect

the coordination among muscle activations, providing insight into how muscular

efforts are pooled to facilitate movement. Similarly, at the neural level synergies

represent the underlying neural commands that orchestrate these muscular actions.

Overall, synergies are interpreted as a dimensionality reduction method adopted

by humans to simplify control, fundamentally transforming a high-dimensional task

into a lower-dimensional one. Together, these levels of analysis—kinematic, muscle,

and neural—offer a multidimensional view of how synergies simplify the control of

the nueromuscular system, providing a framework for both understanding natural

movements and informing the design of prosthetic and rehabilitative technologies. By

leveraging synergies, researchers and engineers can devise systems that more closely

mimic natural hand movements, thereby enhancing the effectiveness of interventions

aimed at restoring or replacing lost motor functions. For more comprehensive

coverage, we direct the reader to [Santello et al., 2016].

This thesis focuses particularly on kinematic hand synergies, initially studied by

Santello et al. [Santello et al., 1998]. In their study, subjects were asked to hold their

right hand in a static posture, as if grasping 57 different household objects. Notably,

the objects were neither physically nor virtually present; participants were required

to imagine them. Principal component analysis revealed that the first two synergies

explained over 80% of the variance in hand postures. The first synergy typically

involved significant flexion and slight adduction of the four fingers, resembling a power

grasp [Napier, 1956], while the second synergy entailed significant thumb inward

rotation, index finger flexion, and moderate middle finger flexion, akin to a pinch

grasp [Napier, 1956] (Figure 1-2).

Similar findings were reported by Weiss and Flanders [Weiss and Flanders, 2004],

who observed analogous results when subjects spelled the alphabet using American

Sign Language. Subsequent research extended the study of synergies to experiments
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Figure 1-2: Postural synergies defined by the first two principal components. The
hand posture at the center of the PC axes is the average of 57 hand postures for one
subject. The postures to the right and left are for the postures for the maximum
(max) and minimum (min) values of the first principal component (PC1), coefficients
for the other principal components having been set to zero. The postures at the
top and bottom are for the maximum and minimum values of the second principal
component (PC2). Figure from Santello et al. [Santello et al., 1998]

involving object contact and temporal hand movement during reach-to-grasp tasks.

Mason et al. [Mason et al., 2001] employed Singular Value Decomposition to

analyze the temporal evolution of postural synergies throughout reach-to-grasp

actions. Further analysis by Santello et al. [Santello et al., 2002] explored the

temporal evolution of synergies across three experimental conditions: memory-guided

movements, movements with virtual object representation, and movements with

physically present objects. Remarkably, the first two synergies persisted across

conditions, accounting for over 75% of variance in hand posture (Figure 1-2).

Overall, research has consistently demonstrated that a small number of synergies,

primarily characterized by a power grasp, can explain a significant portion of

variance across a diverse range of tasks. This suggest that synergies may be used

as a simplifying controller to manage human motor control in the face of a high

degree-of-freedom neuromuscular system.

However, much of the current work has focused on the kinematics of simple grasp

and not on object manipulation or functional tool-use. If we aim to restore motor
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function to those who have suffered from CVA or amputation, we must study hand

manipulation during functional tool use. This prompts a question, do hand synergies

differ during grasp and manipulation? Chapter 2 of this thesis reports an explicit

comparison of grasp synergies and manipulation synergies.

1.4.2 Dynamic Primitives

Commonly, the central nervous system is believed to develop an “internal model”

of an object’s dynamic behavior to facilitate control, enabling the generation of

predictive forward-path control inputs for desired actions. The theory of dynamic

primitives posits that motor behavior, whether involving physical interaction or

not, is crafted using a limited set of primitive dynamic behaviors, acting as

the fundamental “building blocks” of more intricate actions [Hogan and Sternad,

2012, Schaal and Sternad, 2001, Schaal, 2006, Degallier and Ijspeert, 2010]. In

[Hogan and Sternad, 2012], researchers build upon mounting evidence indicating that

sensorimotor control is based on a composition of primitive dynamic actions [Sternad

et al., 2000,Thoroughman and Shadmehr, 2000,Flash and Hochner, 2005,Kargo and

Giszter, 2008, Sternad, 2008, Sing et al., 2009,Degallier and Ijspeert, 2010,Dominici

et al., 2011]. They propose that “human motor control is encoded solely in terms

of primitive dynamic actions.” The authors identify three distinct primitives -

submovements, oscillations, and mechanical impedances - to account for a wide range

of human behaviors, emphasizing that encoding in terms of parameterized primitives

is crucial for learning, performance, and retention of complex skills. The theory

suggests that these primitives can be combined to produce observable forces and

motions, possibly through a virtual trajectory composed of submovements and/or

oscillations interacting with impedances.

Submovements

The first dynamic primitive we will discuss is submovements. Submovements are

primitive dynamic elements of motor behavior; they resemble discrete movements
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but may overlap in time [Hogan and Sternad, 2012]. They can be viewed as building

blocks for more complex movements, assembled sequentially or in overlap to achieve

fluid motion.

The concept of movements being composed of submovements is not new and has

historical precedence in observations by [Woodworth, 1899] (for review, see [Meyer

et al., 1988,Elliott et al., 2001]. However, more recent support for this theory stems

from studies examining the stereotyped speed profiles of submovements in stroke

patients [Krebs et al., 1999] and the development of infant reaching movements [Von

Hofsten, 1991,Berthier, 1996]. These studies highlight that submovements are indeed

a primitive element of human motor control. Moreover, studies have shown that such

a primitive element is useful in facilitating the prediction of sensory consequences of

actions and the detection of errors [Burdet and Milner, 1998].

Hogan and Sternad [Hogan and Sternad, 2012] further define submovements as

attractors that describe smooth, sigmoidal transitions of a variable, with a stereotyped

time profile indicative of a “trajectory attractor”. This definition emphasizes

the control of trajectory rather than final position, challenging the notion of a

point attractor as sufficient for describing the dynamic process of motor control

[Bizzi et al., 1984, Won and Hogan, 1995]. The combination of submovements,

through mechanisms like linear vector superposition, allows for the generation of

complex movement trajectories, highlighting the flexibility and adaptability of this

primitive-based approach for motor control [Flash and Henis, 1991].

Oscillations

Oscillations represent a dynamic primitive that facilitates rhythmic movement. While

mathematically, an oscillation can be perceived as a combination of back-to-back

submovements, rhythmic movement has a well-established presence in the literature

and is phylogenetically ancient. Numerous studies have demonstrated the biological

distinction between oscillations and submovements, as oscillatory behavior can be

evoked and sustained with minimal intervention from the central nervous system

[Brown, 1911,Brown, 1914,Grillner and Wallen, 1985,Schaal et al., 2004].
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Furthermore, it has been observed that there is a limit to rhythmic actions; as the

rhythmic period increases (to approximately 2 to 5 seconds), actions can no longer

be perceived as rhythmic [Fraisse, 1984, James, 1890]. Additionally, experimental

evidence suggests that executing smooth rhythmic motions very slowly is challenging

for humans; instead, they tend to default to a motion composed of overlapping

submovements [Park et al., 2017]. These limitations of rhythmic motion underscore

the distinction between submovements and oscillations.

Mechanical Impedance

Submovements and oscillations may lay the groundwork for unconstrained motion,

but contact and physical interaction are vital for the hallmark of human performance:

object manipulation and tool utilization. In tasks necessitating physical interaction,

the challenge lies in controlling both force and motion. One approach to address this

challenge is impedance control, which governs the relationship between motion and

force and is frequently modeled by the equation 1.2,

𝐹 = 𝑍{𝑥0 − 𝑥} (1.2)

where 𝑍{·} is the mapping from a force to a motion (i.e. the impedance).

Theoretically, this mapping may be any linear, or non-linear, operator. It was

introduced by Hogan, [Hogan, 1985a,Hogan, 1985b,Hogan, 1985c] and has since been

supported as a plausible description of human motor control.

To better understand impedance control, refer to the 1 DOF example in Figure

1-3. Figure 1-3 shows a mass-spring-damper system whose equation of motion, in the

absence of external forces takes the form,

𝑚�̈� = 𝑘(𝑥0 − 𝑥) + 𝑏(𝑥0 − �̇�) (1.3)

and the control law takes the form,

𝐹𝑎𝑐𝑡 = 𝑘(𝑥0 − 𝑥) + 𝑏(𝑥0 − �̇�) (1.4)
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Figure 1-3: A diagram of a 1 DOF mass-spring-damper system. All displacements
and forces pointing rightward will be considered positive. Figure from [West, 2020].

where the control input, 𝐹𝑎𝑐𝑡 (actuator force), is determined by the zero-force

trajectory, 𝑥0, which represents the trajectory 𝑥 would follow in the absence of

external forces, and is linked to the actual trajectory, 𝑥, through a rigid body of

mass, 𝑚, spring of stiffness, 𝑘, and damper of damping, 𝑏. In the Laplace domain,

the forward path dynamics of this controller are,

𝑋

𝑋0

=
𝑏𝑠+ 𝑘

𝑚𝑠2 + 𝑏𝑠+ 𝑘
(1.5)

Intuitively, one can think of 𝑥0 as a planned motion that is “pulling” the actual motion,

𝑥, via a mass-spring-damper connection.

In the presence of an external force, 𝐹𝑒𝑥𝑡, the disturbance response is modeled by

equation 1.6,

𝑍 =
𝐹𝑒𝑥𝑡

𝑋
= 𝑚𝑠2 + 𝑏𝑠+ 𝑘 (1.6)

where 𝑍 is the impedance. This impedance characterizes the interactive behavior of

the object (i.e. the relation between force and motion).

In the realm of human motor control, mechanical impedance emerges as a third

category of dynamic primitives alongside submovements and oscillations. Humans can

voluntarily modulate mechanical impedance through the co-contraction of antagonist
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muscle groups, leading to an increase in net mechanical impedance due to the positive

correlation between muscle impedance and muscle force [Nichols and Houk, 1976,

Hoffer and Andreassen, 1981]. This mechanism highlights how mechanical impedance

at a joint results from the combined contributions of each involved muscle group.

Furthermore, mechanical impedance is subject to modulation by neural feedback

mechanisms, with muscle spindles and Golgi tendon organs playing significant roles

at the spinal level or above [Prochazka et al., 2000]. The adaptability of the feedback

pathway gains underscores the complexity and flexibility of the system.

Hogan [Hogan, 1990] posits that mechanical impedance is particularly robust

during contact and interaction with objects, influencing the dynamics of hand and arm

movements and thereby altering behavioral output. This robustness, independent of

object behavior or contact, underscores the qualification of mechanical impedance,

driven by the neuromechanical system dynamics, as a dynamic primitive. This

independence ensures behavior is not contingent on external interactions but on

intrinsic system properties.

Remarkably, mechanical impedance, when integrated with skeletal inertia, permits

the linear superposition of nonlinear impedances, enabling the control of interaction

tasks across varying conditions [Hogan, 1985a,Toffin et al., 2003,Hogan and Buerger,

2018, Franklin et al., 2007]. Such capabilities indicate that modulating mechanical

impedance is essential for managing tasks involving physical contact, solidifying its

status as a foundational element of human motor behavior.

Mechanical impedance, when coupled with kinematic hand synergies acting as the

zero-force trajectory (Eq. 1.2), plays a crucial role in managing grasping actions. This

approach is exemplified in the soft synergy model, which emphasizes the importance

of impedance modulation for ensuring grasp stability. Through this model, the

dynamic equilibrium of the hand is maintained by two opposing force fields: one

governed by the desired hand motion (a given synergy), and the other by the object,

repelling the hand from penetrating it (Figure 1-4). The hand’s ability to achieve

a stable grasp depends on both modulating sufficient mechanical impedance and

utilizing the initial synergies. Without precise control over these primary synergies,
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Figure 1-4: The reference hand moves on the synergy manifold (a–d) and represents
an attractor for the real hand (e–h), which is repelled by contact forces with the
object. The resulting configuration is ultimately dictated by the hand mechanical
impedance and control stiffness. Figure from Bicchi et al. [Bicchi et al., 2011]

achieving stability requires the engagement of numerous higher-order synergies. In

sum, the soft synergy model serves as a simplified control model that highlights the

interplay between mechanical impedance and kinematic synergies. Moreover, the soft

synergy model has become a pivotal control strategy for numerous prosthetic and

anthropomorphic robotic hands [Laffranchi et al., 2020,Varol et al., 2014,Brown and

Asada, 2007,Catalano et al., 2014], underscoring its significance in both theoretical

understanding and practical applications in robotics.

Additionally, using submovements as the reference trajectory of an impedance

controlled robot has been used to successful simplify robot control during tasks

involving complex dynamics and interaction. Specifically, a controller based on

dynamic primitives has been used successfully (in simulation) to control a 2 DOF

arm to manipulate a dynamically complex whip with 50 DOF in a targeting task

[Nah et al., 2020, Nah et al., 2021, Nah et al., 2023a]. Moreover, work has been

done to demonstrate that dynamic primitives, renamed to elementary dynamic

actions, facilitate physical robot control during contact-rich manipulation due to the

embedded modularity [Nah et al., 2023b, Lachner et al., 2023]. This work reaffirms

the transformative potential of simplified control models derived from the study of

human motor control to advance robotic applications.

The research detailed in this literature review highlights the exciting prospect
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of leveraging simplified controllers inspired by studies of human motor control for

innovation in both motor neuroscience and robotics. This exploration of simplified

control mechanisms, rooted in the innate efficiency of human motor strategies,

forms the cornerstone of this thesis. Moreover, this endeavor not only deepens our

understanding of the human body but also unlocks new possibilities in creating

machines capable of extending, augmenting, and replicating human capabilities,

marking a pivotal advancement in the evolution of human knowledge and mechanical

innovation.

1.5 Summary of Thesis

The goal of this thesis is to provide a descriptive understanding of human

manipulation in unimpaired subjects. To do so, it navigates the complex terrain of

human motor control and its implications in robotics, driven by the quest to uncover

the principles behind human dexterity. Each chapter builds upon the idea that

uncovering simplified control mechanisms used by humans can significantly influence

both theoretical knowledge and practical applications in rehabilitation and robotic

design.

Starting off, Chapter 2 delves into the realm of kinematic synergies, shedding

light on the subtle yet critical distinctions between the mechanisms underlying

reach-and-grasp actions and those governing the manipulation of objects and tools.

The chapter reveals that manipulation tasks involve a greater number and distinct

subset of hand synergies compared to simple grasping. These results underscore the

intricate nature of functional hand use and the need to specifically study functional

hand manipulation, not just grasping.

In Chapter 3, our focus shifts to human force regulation, aiming to address an

overlooked question from Chapter 2: how do humans manage force during physical

interaction? Specifically, we inquire whether humans can manage force independently

of motion. Contrary to longstanding assumptions in robotics, this study unveils that

in humans control of force and motion are intertwined through mechanical impedance,
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urging a reevaluation of control strategies in human-robot interactions.

In Chapter 4, we build upon Chapter 3 by investigating whether mechanical

impedance is essential to the human internal model. To address this, we draw

upon the well-cited relationship between human motor action and motor perception

[Meltzoff and Moore, 1997, Grush, 2004, Bandura, 1986], asking the question: Can

humans perceive mechanical impedance? Our findings reveal that an aspect of

mechanical impedance, stiffness, can indeed be perceived, primarily through path

information. These results not only offer insight into the mechanisms underlying

human motion perception but also carry significant implications for the robotics and

rehabilitation fields.

In Chapter 5, we aim to address a question subtly provoked in Chapter 2. While

Chapter 2 established that synergies may simplify motor control during dexterous

manipulation tasks, it also highlighted their task-specific nature. This observation

suggests that we may have access to more synergies than degrees of freedom [Tessari

et al., 2024], and that synergies may serve as a means to learn and store new behaviors

in a library to be accessed during specific tasks. This raises the challenging question

of how to ensure that the tasks we study represent the full spectrum of complex

manipulation activities humans can perform with their hands. Chapter 5 seeks

to answer this question by proposing a new metric: the Variance-Accounted-For

based Complexity Index (VAF-CI). Validated across multiple dexterous tasks, ranging

from basic reaching-to-grasp to piano playing, this novel metric can be leveraged to

ensure that future studies of hand manipulation probe a wider range of the hands’

capabilities, and related synergistic behavior.

In Chapter 6, the main findings of the work are reviewed and future work directions

are discussed.

Not to be overlooked, in Appendix A, we delve into an important aspect of synergy

decomposition: data pre-processing. The analysis presented therein confirms the

efficacy of removing the mean as the appropriate data pre-processing step prior to

synergy decomposition.

Together, these chapters leverage the study of human motor control, learning, and
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perception through simple, easily interpretable models to weave a narrative that not

only advances our understanding of human motor control but also lays the groundwork

for innovations in robotics and rehabilitation. The aim is to restore or augment human

hand function through more intuitive designs inspired by the natural efficiency of

human movement.

As this thesis integrates peer-reviewed published papers (e.g., in Chapters 3, 4, and

5, and Appendix A), some redundancy may arise. This redundancy serves the purpose

of reinforcing the context of each study, aiding in the comprehensive understanding

of the research findings.

A video presentation of this thesis can be found at:

https://www.youtube.com/watch?v=u2eCJHqEGww
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Chapter 2

Reach-and-Grasp Synergies Differ

from Manipulation Synergies

In this chapter, we uncover new insights into kinematic synergies during functional

human hand manipulation of objects and tools, through the study of wire harness

installation. It emphasizes the nuanced distinctions between functional hand

manipulation and simple grasping, revealing that manipulation tasks require a greater

number and distinct subset of hand synergies compared to simple grasp actions.

This research marks a significant step toward appreciating the intricacies of hand

coordination in complex tasks beyond grasping.

This chapter is an adapted version of a paper that was submitted to the Journal of

Neurophysiology titled, “Kinematic Hand Synergies Differ Between Reach-and-Grasp

and Functional Object Manipulation.” This work was done in collaboration with

Neville Hogan.

2.1 Introduction

A hallmark of human behavior is the ability to use tools to help us manage our

environment. For example, in reading this thesis, you have likely entered a car,

driven to the office, opened a computer, and typed notes on the screen or written

them out using a pen and paper. The steering wheel of the car, the keyboard of
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the computer, and the pen are all examples of tools that are manipulated by the

hand to facilitate human life. The dexterity of our hand allows us to manipulate a

wide array of tools, a feat that not many other animals are capable of [Diogo et al.,

2012,Kenward et al., 2005,Napier, 1956,Weir et al., 2002].

Unfortunately, many people worldwide suffer from injury that either inhibits

or eliminates their hand dexterity. For example, 15 million people worldwide and

800,000 Americans suffer from loss of motor function due to Cerebral Vascular

Accident (CVA) every year [Virani et al., 2020]. Moreover, hand function is

often most severely affected and experiences the worst recovery rates post CVA.

Additionally, 23 million people worldwide [McDonald et al., 2020] and 700,000

Americans [Ziegler-Graham et al., 2008] are currently living without their hands

due to amputation; the number of Americans with limb amputations is expected

to double by the year 2050 [Ziegler-Graham et al., 2008]. In a world designed

for humans with dexterous hands, the loss of a functioning hand presents a great

challenge, compromising the ability to perform activities of daily life.

In an effort to better rehabilitate those who have lost motor function post CVA

and to design prosthetic hands for those who have lost their limbs, previous research

has aimed to understand human hand motion. However, kinematic analysis of

the human hand is challenging due to the 20+ degrees of freedom of the various

joints [Kandel et al., 2000a]. Knowledge of human biomechanics and sensory-motor

control may simplify this analysis. It is likely that many of these degrees of freedom

are controlled in functional groups, based on biomechanical (and possibly neural)

constraints. Commonly known as synergies, these groupings reduce the degrees of

freedom in the human hand. Mathematically, if 𝜃 ∈ R𝑛 denotes the configuration

(joint angles) of the hand, a kinematic synergy may be described by a mapping

𝜃 = 𝜑(𝛿) where 𝛿 ∈ R𝑚 is a descending neural command with fewer dimensions than

𝜃, i.e. 𝑚 < 𝑛, and 𝜑(·) is a time-invariant mapping such that 𝜃(𝑡) = 𝜑(𝛿(𝑡)). With

this assumption, a linear approximation of the kinematic mapping 𝜑(·) may be found

via Principal Component Analysis [Smith, 1988] or Singular Value Decomposition,

two dimensionality reduction methods.
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Inspired by the work of Bernstein [Bernstein, 1967,Bernstein, 2014], Santello et

al. first studied kinematic synergies of the human hand in 1998; they found that

two synergies accounted for more than 80% of the variance in hand posture during

grasping of a set of 57 imagined objects [Santello et al., 1998]. Other researchers

have found similar results in tasks that involve object contact [Santello et al., 2002],

reach and grasp [Mason et al., 2001], object manipulation [Todorov and Ghahramani,

2004], and even the American sign language [Weiss and Flanders, 2004]. For review

see [Santello et al., 2016].

This decrease in the hands’ operational degrees of freedom may enable simpler

control. Experimentally, it affords researchers a means to simplify kinematic analysis.

However, much of the current work has focused on the kinematics of simple grasp

and not on object manipulation or functional tool-use. If we aim to restore motor

function to those who have suffered from CVA or amputation, we must study hand

manipulation during functional tool use. This prompts a question, do hand synergies

differ during grasp and manipulation? This paper reports an explicit comparison of

grasp synergies and manipulation synergies.

A study of human manipulation may also inform robotic manipulation [Mason,

2018]. In the robotics community, robots commonly pick and place objects [Correll

et al., 2018,Eppner et al., 2018,Hernandez et al., 2017,Yu et al., 2016]. More recently,

robots have demonstrated limited forms of object manipulation, such as finger

gaits [Abondance et al., 2020,He and Ciocarlie, 2021,Khandate et al., 2021,Morgan

et al., 2022,Rodriguez et al., 2012,Zeng et al., 2018] and object repositioning within

grasp [Chavan-Dafle et al., 2019,Dafle et al., 2014,Hogan et al., 2018]. However, few

robots exhibit the dexterity and versatility of humans. Thus, studying how humans

manipulate tools during functional tasks may help inform the robotics community.

Robot control is further complicated during tasks that involve manipulation

of deformable objects [Chi et al., 2022, Herguedas et al., 2019, Hopcroft et al.,

1991,Sanchez et al., 2018,Yamakawa et al., 2011,Zhang et al., 2021]. The inability of

robots to manipulate deformable objects is especially evident in the manufacturing

process known as wire-harnessing. A wire harness is the assembly of electrical cables

43



used in machinery, such as aircraft, automobiles, and other systems with electrical

components. The process of installing these wire harnesses into their respective

electrical systems is known as wire-harnessing. Generally, on an assembly line, robots

can often be used to quickly and accurately assemble a system of rigid parts. However,

due to the non-rigidity of wire harnesses, automating this process is challenging

[Sanchez et al., 2018]. Consequently, wire-harnessing is performed manually, creating

a bottleneck in the assembly process. Humans’ ability to outperform robots in such

a task is interesting as humans have much slower actuation, communication and

computation than robots [Hogan, 2017, Hogan and Sternad, 2012]. This paradox

motivates research to investigate how humans perform this task. To bridge the gap

in our knowledge of how the human hand manipulates tools and complex objects, we

studied wire-harnessing.

We aimed to test two hypotheses that compared the number of reduced degrees

of freedom and the form of the reduced degrees of freedom:

1. The number of synergies underlying manipulation is the same as those

underlying reach-and-grasp.

2. The identity of synergies underlying manipulation is different from those

underlying reach-and-grasp.

To test these hypotheses, we measured human hand motion during two

experiments, in the context of wire harness installation. In the first experiment,

subjects reached for and grasped a tool or object commonly used in wire harness

installation. In the second experiment, subjects manipulated those objects and

tools to install a wire harness on a mock electrical cabinet. We found that more

synergies were required to competently describe the manipulation data than the

reach-and-grasp data. Moreover, upon comparing the kinematic hand synergies across

reach-and-grasp and manipulation, we found that the difference was predominantly

in the higher-order synergies. If we want to provide therapeutic technologies that

restore hand function to those who have lost it, we must study and understand these

differences; here, we provide a starting point.
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2.2 Methods

2.2.1 Experimental Task

Seven adults, with no known history of neurological or musculoskeletal problems,

participated in this study (3 women and 4 men, ages ranging from 18 to 28 years old).

All subjects were right-handed. Participants were informed about the experimental

procedure and agreed to sign a consent form. All procedures were approved by MIT’s

Institutional Review Board.

2.2.2 Data Acquistion

Each subject performed two different tasks. The first task, which will be referred to as

the Reach-and-Grasp Experiment, involved reaching, grasping, and picking up a tool.

Specifically, subjects were asked to reach for and grasp a pair of scissors, a Zip tie, a

screwdriver, a wire harness with its branched ends tied, and a wire harness with its

branched ends untied. They were specifically told to grasp the object as if they were

going to use it. Subjects repeated this four times for each object. The second task was

designed to emulate wire-harnessing in a manufacturing plant; subjects were required

to use the tools from the first task to install a wire harness onto a mock electrical

cabinet (Fig. 2-1). This task will be referred to as the Manipulation Experiment; it

was performed in five distinct steps. At each step, subjects were verbally told what

to do. They were also given a booklet with written instructions and a picture of the

completed step. The steps were:

1. Zip tie the branched ends of the wire harness at three specified points.

2. Use the scissors to cut off the excess tips of the Zip ties.

3. Use the U-brackets, provided screws, and screwdriver to screw the wire harness

into the top of the mock electrical cabinet.

4. Route the wire harness through the hooks on the mock electrical cabinet.

5. Plug the connector into the socket on the mock electrical cabinet.
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These steps were chosen to simulate an assembly task that requires both dexterous

manipulation of a deformable object and functional tool use.

Figure 2-1: after a subject had finished the Manipulation Experiment. On the bottom
half of the wire harness are the zip ties that were used to tie the branched ends of
the wire harness (Step 1 and 2). On the top half of the mock electrical cabinet are
the u-brackets used to screw the wire harness on the mock electrical cabinet (Step 3).
The red hooks were placed so that the subjects could route the wire harness (Step
4). A 3D printed socket appears above the right most red hook for subjects to plug
the wire harness connector into (Step 5).

While subjects performed these tasks, we measured their hand posture using
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a CyberGlove (CyberGlove; Virtual Technologies, Palo Alto, CA), a glove with

embedded sensors that measure joint kinematics. Specifically, the flexion of the distal

interphalangeal (DIP), proximal interphalangeal (PIP), and metacarpophalangeal

(MCP) joints of the four fingers were measured. Additionally, the abduction (ABD)

of the four fingers at the MCP joints was measured. At the thumb, the flexion at

the MCP and interphalangeal (IP) joints, abduction (ABD) at the carpometacarpal

joint, and rotation (ROT) about an axis passing through the trapeziometacarpal joint

were measured. Lastly, palm arch (PA) and wrist (W) pitch and yaw were measured.

Throughout both experiments, subjects wore a CyberGlove on each hand. However,

only the data collected from the right hand is presented here. All subjects reported

being right hand dominant. In all cases, the CyberGlove collected samples at ∼ 200

Hz with a nominal angular resolution of < 0.1∘.

In the Reach-and-Grasp Experiment, subjects started with their hands flat on a

table. After three seconds of data collection, subjects were verbally instructed to

grasp the object placed 30cm in front of their hand. After 15 seconds, data collection

ended. This was repeated 20 times (4 trials each for 5 different objects). In the second

Mock Wire-Harnessing task (the Manipulation Experiment), subjects started with

their hand in the same initial position, and the tools to be used were similarly placed

30 cm in front of them. After three seconds of data collection, subjects were verbally

instructed to begin the specific step of the wire harness assembly task. Data collection

terminated when subjects deemed they were done with the task and returned their

hands to the initial position. All subjects were able to successfully complete the task.

Notably, all subjects used their right hand as their primary tool-using hand.

To detect movement onset, we calculated average joint velocity, and then smoothed

it using a sliding window of 5 adjacent samples. Then, movement was detected when

the smoothed displacement was greater than 5% of its maximum value computed over

the entire data set. Thus, in the Reach-and-Grasp Experiment, reach began at the

instant movement was detected, and ended after the last movement was detected.

After movement concluded, we assumed that the grasp phase had commenced. The

grasp phase concluded with the end of data collection. Thus, the Reach-and-Grasp
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Experiment was partitioned into two sets of data; the first set contained the

time-sampled measurements of 23 joint angles during reach, and the second set

contained the time-sampled measurements of 23 joint angles during grasp. Then,

we re-partitioned each set of data to 100 bins.

In accordance with the work done by [Mason et al., 2001], we analyzed reach and

grasp together. So, the two data sets were recombined to form the reach-and-grasp

data of one subject during one trial, and the reach portion was evenly weighted with

the grasp portion of the data set. In the Manipulation Experiment, we used the data

after movement detection until the end of collection for a given step. Moreover, we

interpolated the data in each step to 1000 bins as the Manipulation Experiments

lasted longer than the Reach-and-Grasp Experiments.

2.2.3 Data Analysis

Emergence of Kinematic Hand Synergies

To extract kinematic hand synergies, we used the singular value decomposition (SVD)

method introduced by [Mason et al., 2001] to analyze the evolving hand postures

in both tasks. In the Reach-and-Grasp Experiment, the data for each subject was

formed into matrix 𝑋1,0 ∈ R4000×23, where the columns consisted of the 23 joint

angles that were measured, and the 4000 rows stemmed from the 200 bins × 5

objects × 4 trials. In the Manipulation Experiment, we computed a data matrix,

𝑋2,0, similarly – 𝑋2,0 ∈ R5000×23, where the columns represent the 23 joint angles

measured, and the rows represent the 1000 bins × 5 steps. Prior to SVD, the data

were centered; that is, the mean of each feature (column) was removed [West et al.,

2023]. Singular value decomposition computes the left and right singular vectors

of a matrix. So, 𝑆𝑉 𝐷(𝑋𝑖,𝑗) = 𝑈𝑖,𝑗Σ𝑖,𝑗𝑉
𝑇
𝑖,𝑗 produces linear combinations of hand

joint angles (i.e. kinematic synergies) in 𝑉𝑖,0 ∈ R23×23, their temporal evolutions

in 𝑈1,0 ∈ R4000×4000 or 𝑈2,0 ∈ R5000×5000, and an associated variance measure, the

singular values, on the principal diagonal of Σ1,0 ∈ R4000×23 or Σ2,0 ∈ R5000×23.

Additionally, to provide a direct comparison of reach-and-grasp of a particular tool
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to manipulation of that specific tool, we computed data matrices for reach-and-grasp

of the zip tie, scissors, and screwdriver (𝑋1,1, 𝑋1,2,and 𝑋1,3 ∈ R800×23) and steps 1,

2, and 3 of the manipulation experiment (𝑋2,1, 𝑋2,2, and 𝑋2,3). Since there was no

need to equally weight the steps in the manipulation data, here we smoothed the joint

position data by down-sampling to 60Hz, rather than 1000 bins. Then, synergies were

extracted using the SVD method described above.

To obtain a measure of the variance-accounted-for (VAF) in the data by a given

kinematic hand synergy, we used the singular values along the diagonal of matrix

Σ𝑖,𝑗. Specifically, we report VAF as a percentage obtained by dividing the square of

a singular value by the total sum of the squares of the singular values in Σ𝑖,𝑗.

To test if manipulation and reach-and-grasp can be described by the same number

of synergies, we must quantify the number of significant synergies. Thus, we followed

the method of [Lambert-Shirzad and Van Der Loos, 2017]. Specifically, we report

the number of synergies required to achieve at least 90% VAF and where inclusion

of another subsequent synergy did not add an additional 5% VAF. To determine if

there was an effect of tool or experiment on the number of significant synergies, these

values were submitted to a 2 (experiment) × 4 (tool) repeated-measures ANOVA.

Comparison of Kinematic Hand Synergies

While the above analysis compares the size of the synergy space, it is also insightful

to compare the form of the synergy space. Thus, to compare the calculated kinematic

synergies, 𝑉𝑖,𝑗, across experiments, we computed the product of each individual

subject’s reach-and-grasp synergies, 𝑉1,𝑗, and their manipulation synergies, 𝑉2,𝑗. This

resulted in a matrix consisting of the cosine similarities, 𝐶(𝑖, 𝑗), between synergies

where 𝑖 denotes the 𝑖𝑡ℎ reach-and-grasp synergy and 𝑗 denotes the 𝑗𝑡ℎ manipulation

synergy. Here, we report the magnitude of these cosine similarities, ranging from 0

to 1.

𝐶 = 𝑐𝑜𝑠(𝜃) = |𝑉 𝑇
1 �̇�2| (2.1)
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If synergies were the same irrespective of experiment (i.e. the data span the same

hyperspace), we would expect a matrix of cosine similarities with ones on the diagonal

and zeros otherwise. Contrarily, if the reach-and-grasp synergies differed from the

manipulation synergies (i.e. 𝑉1,𝑗 ̸= 𝑉2,𝑗), the resulting matrix, 𝐶 ∈ R𝑚×𝑚, would

be asymmetric. In our report of the cosine similarities, in line with a plethora of

other studies [Cheung et al., 2009,Cheung and Seki, 2021,D’avella and Tresch, 2001,

Tresch et al., 2006] we highlight the cosine similarities that were greater than 0.9.

Moreover, the values along the diagonal of this matrix are referred to here as the

synergy similitude – a measure of the likeness between a subject’s reach-and-grasp

synergies, 𝑉1,𝑗, and their manipulation synergies, 𝑉2,𝑗.

Ideally, we would aim to test the hypothesis that two synergy vectors are the

same, 𝑉1,𝑗 = 𝑉2,𝑗, which would result in a cosine similarity of 1, 𝐶 = 1. However,

cosine similarity is upper bounded by unity. Consequently, its distribution violates

the implicit assumption of standard statistical test (i.e. approximate normality).

Instead, to determine if subjects’ reach-and-grasp synergies differed from their

manipulation synergies we tested the hypothesis that the two synergy vectors were

orthogonal, 𝐶𝑖,𝑗 = 0. To do so, we generated a distribution of the manipulation

synergy by randomizing the order of the features in the synergy vector and

computing the cosine similarity between the reach-and-grasp synergy and this random

manipulation synergy. This was then repeated 1000 times to create a distribution.

Then, we calculated where the observed cosine similarity fell within this distribution.

It is important to note that here we computed 𝐶 = 𝑐𝑜𝑠(𝜃) = 𝑉 𝑇
1 ·𝑉2, ranging from -1 to

1; thus, the null distribution was centered about 0 and had a standard deviation less

than unity. Finally, the reported p-value indicates the probability of obtaining a cosine

similarity as extreme as the observed cosine similarity if there were no relationship

(i.e. the reach-and-grasp and manipulation synergies were orthogonal, 𝐶𝑖,𝑗 = 0).

To determine if there was an effect of synergy-order on synergy similitude, we

computed a linear regression between the two across all subjects. A significant effect

was indicated if the slope was different from zero, i.e., the 95% confidence interval of

the slopes did not include zero.
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Recognizing that the default synergy order, based on variance-accounted-for, is

subject to random variation due to experimental ‘error’ and ‘noise’, we reordered

the manipulation synergies to continue the above analysis on similitude. Specifically,

we recorded the columns of the manipulation synergy matrix, 𝑉2,𝑗, such that upon

computing the cosine similarity matrix, 𝐶, the sum of the similitude (i.e., the sum

of the diagonal values of 𝐶) was maximized. Subsequently, we followed the above

procedures to determine if subjects’ reach-and-grasp synergies differed from their

manipulation synergies and we tested if there was an effect of synergy-order on synergy

similitude. Finally, we report the new manipulation synergies’ rank based on the new

synergy matrix’s column order that maximized similitude.

All analyses were conducted in MATLAB 2022b.
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2.3 Results

2.3.1 Emergence of Kinematic Hand Synergies

Variance-Accounted-For

Figure 2-2: Variance-accounted-for (VAF) by each synergy averaged across subject
for (Top Left) all tools, (Top Right) zip tie, (Bottom Left) scissors, and (Bottom
Right) the screwdriver. Lines show the cumulative sum of the VAF. Error bars are
±1 standard deviation.
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Figure 2-3: Number of significant synergies in reach-and-grasp or manipulation of
each tool averaged across subjects. Error bars are ±1 standard deviation. An
asterisk (*) indicates a significant difference between the number of reach-and-grasp
and manipulation synergies.

In general, manipulation required more synergies than reach-and-grasp. Fig. 2-2

shows the average variance accounted for by each of the synergies and their cumulative

sum. Moreover, Fig. 2-3 shows the number of significant synergies for each tool

and experiment. These values range from 1 synergy, in the case of one subject’s

reach-and-grasp of the screwdriver, to 8 synergies, in the case of one subject’s

manipulation of the screwdriver. Nonetheless, this analysis demonstrates that fewer

synergies were needed than the full 23 DOF joint space of the hand.

A two-way (2 experiment × 4 tool) ANOVA on number of significant synergies

showed that there was an effect of experiment (𝑝 = 1.07𝑒−10) and tool (𝑝 = 3.96𝑒−06)

on the number of synergies required to describe the data. However, there was a

significant interaction (𝐹3,48 = 18.86, 𝑝 = 3.62𝑒− 08).

Post-hoc t-tests showed that the number of significant synergies computed across

all tools (𝑀 = 5.43, 𝑆𝐷 = 0.76) was statistically greater than that of the scissor (𝑀 =
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3.64, 𝑆𝐷 = 0.75)(𝑝 = 2.37𝑒 − 06) and the screwdriver (𝑀 = 4.34, 𝑆𝐷 = 2.44)(𝑝 =

0.0051). Additionally, the significant number of synergies computed across the zip tie

(𝑀 = 4.86, 𝑆𝐷 = 1.66) was statistically greater than that of the scissor (𝑝 = 0.0013).

Moreover, the significant number of synergies in the manipulation experiment (𝑀 =

5.61, 𝑆𝐷 = 1.29) was statistically greater than that of the reach-and-grasp experiment

(𝑀 = 3.54, 𝑆𝐷 = 1.32)(𝑝 = 8.78𝑒 − 13). The number of significant synergies

was statistically greater in the manipulation experiment than in the reach-and-grasp

experiment when computed across all tools (𝑝 = 8.93𝑒−04), the zip tie (𝑝 = 5.14𝑒−04)

and the screwdriver (𝑝 = 4.44𝑒 − 07) (Bonferroni adjusted 𝛼𝐵𝑜𝑛𝑓𝑒𝑟𝑟𝑜𝑛𝑖 = 0.05/4 =

0.0125). However, no effect was observed when comparing scissor reach-and-grasp to

scissor manipulation (𝑝 = 0.74). To summarize, the number of necessary synergistic

degrees-of-freedom was higher during manipulation than reach-and-grasp, except in

the case of scissors.

Kinematic Hand Synergies

As mentioned above, we used singular value decomposition to compute the synergies

in our data set. The first reach-and-grasp and manipulation synergies computed

for each subject are shown in Fig. 2-4. Across all datasets, the first synergy was

dominated by flexion of the MCP and PIP joints. These movements are akin to

the power grasp that has been reported throughout the previous literature [Napier,

1956, Santello et al., 1998, Santello et al., 2016]. This motion was similar across

subjects. The second synergy was dominated by thumb rotation (Fig. 2-5). Here,

there appeared to be greater variation across subjects. The third (Fig. 2-6) and

higher order synergies had such great variation among subjects that description of a

common physiological movement risks being specious.
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Figure 2-4: The first synergy. Each line denotes a different subject. Each row denotes
synergies computed across a different data set (i.e. 𝑗 in 𝑉𝑖,𝑗) while each column denotes
synergies computed across either reach-and-grasp, 𝑉1,𝑗, or manipulation, 𝑉2,𝑗.
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Figure 2-5: The second synergy. Each line denotes a different subject. Each row
denotes synergies computed across a different data set (i.e. 𝑗 in 𝑉𝑖,𝑗) while each column
denotes synergies computed across either reach-and-grasp, 𝑉1,𝑗, or manipulation, 𝑉2,𝑗.
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Figure 2-6: The third synergy. Each line denotes a different subject. Each row denotes
synergies computed across a different data set (i.e. 𝑗 in 𝑉𝑖,𝑗) while each column denotes
synergies computed across either reach-and-grasp, 𝑉1,𝑗, or manipulation, 𝑉2,𝑗.

2.4 Comparison of Kinematic Hand Synergies

While Fig. 2-2 and 2-3 compare the size of the synergy subspaces they do not compare

their form; thus, to compare the form of the synergies across the two experiments,

we computed a cosine similarity matrix; its magnitude for each subject is shown

in Fig. 2-7. Each row denotes a comparison across a different subset of tools and

each column denotes a different subject. Additionally, the right column in the figure

shows the average of all the subjects’ similarity matrices. Moreover, we highlight

cosine similarities that are greater than 0.9 with color. Specifically, in the all-tools

case, we observe a cosine similarity of greater than 0.9 in 3 of the 7 subject’s first

synergy comparison; in the scissors case we observe a cosine similarity greater than
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0.9 in 2 of the 7 subjects first synergy comparison and 1 of the 7 subject’s third

synergy comparison. In the Zip tie and screwdriver similarity synergy comparisons

we do not observe a cosine similarity greater than 0.9. Moreover, despite the evident

differences between subjects, the average across subjects reflects common features

seen in all subjects. Notably, the cosine similarity between the first synergy of each

experiment is large while that of the subsequent synergies decreases.
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Figure 2-7: Cosine similarities between the first 8 synergies for the reach-and-grasp
and manipulation tasks for all subjects. Cosine similarities greater than 0.9 are
highlighted in color. Each row denotes a different subject; the last row shows the
average across all subjects. Each column denotes comparison across a different subset
of tools.
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Number of Statistically Similar Synergies
Syn 1 Syn 2 Syn 3 Syn 4 Syn 5 Syn 6 Syn 7 Syn 8

All Tools 7 6 6 4 3 2 0 0
Zip tie
/ Step 1 5 3 3 3 1 1 0 0

Scissors
/ Step 2 5 4 5 2 0 0 0 0

Screwdriver
/ Step 3 6 1 3 0 2 3 0 0

Table 2.1: The number of statistically similar synergies upon comparing a subjects’
reach-and-grasp synergy (syn) to their manipulation synergy (syn) of the same order.
The total number of subjects was 7. For brevity, only the first 8 synergies are shown.
No subsequent synergies were statistically similar.

Additionally, to determine if subjects’ reach-and-grasp synergies differed from

their manipulation synergies we tested the hypothesis that the two synergy vectors

were different, 𝐶𝑖,𝑗 = 0. Two synergy pairs that reject this hypothesis suggest that the

reach-and-grasp synergy and manipulation synergy span a similar subspace. Table

2.1 reports the number of statistically similar synergy pairs of the same order from

the 7 subjects. That is, Table 2.1 tallies the number of statistically similar synergy

pairs on the diagonal of the cosine similarity matrix presented in Fig. 2-7. In general,

as synergy order increased, the number of statistically similar synergies decreased.

To determine if there was an effect of synergy-order on synergy similitude, we

computed a linear regression between the synergy similarity and synergy order across

all subjects. Note, only the synergies that were deemed significant (Fig. 2-3) were

included. This regression is shown in Fig. 2-8. In all cases, the regression slopes were

negative and significantly different from zero (All Tools: 𝑝 = 2.1𝑒− 07; Zip tie/ Step

1: 𝑝 = 0.0039; Scissors / Step 2: 𝑝 = 0.0055; Screwdriver / Step 3: 𝑝 = 0.0022).

Note that while the coefficient of determination of these linear regressions were in the

medium to low range (All Tools: 𝑅2 = 0.49; Zip tie / Step 1:𝑅2 = 0.19; Scissors /

Step 2: 𝑅2 = 0.27; Screwdriver / Step 3: 𝑅2 = 0.19), all of the regression models were

significant when compared to a constant model; hence, the significant slope. Thus,

we conclude that synergy similarity decreased with synergy-order.
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Figure 2-8: Synergy similitude across participants computed across each tool. The
asterisk (*) indicates a significant slope.

The default synergy order produced by SVD was based on the amount of

variance a given synergy accounted for in the data; as synergy order increased the

variance-accounted-for (VAF) decreased. Our proposed similitude measure focused

on the cosine similarity of synergies with the same order and was thus susceptible to

synergy order. This highlights that the default synergy order does not exactly allow us

to compare the most similar synergies across reach-and-grasp and manipulation. To

combat this, we reordered the manipulation synergies to maximize synergy similitude
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when compared to the reach-and-grasp synergies. These comparisons are presented in

Fig. 2-9. There, we highlight cosine similarities that are greater than 0.9 with color.

As in Fig. 2-7, we still observe in the all-tools case, a cosine similarity of greater than

0.9 in 3 of the 7 subject’s first synergy comparison and in the scissors case a cosine

similarity greater than 0.9 in 2 of the 7 subjects first synergy comparison and 1 of the 7

subject’s third synergy comparison. In the zip tie and screwdriver similarity synergy

comparisons we do not observe a cosine similarity greater than 0.9. Notably, the

number of statistically similar synergies is quantified in Table 2.2. There, we observed

a higher coincidence of statistically similar synergies on the diagonal. As expected,

we see an increase of statistically similar synergies in Table 2.2 when compared to

Table 2.1.
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Figure 2-9: All subjects’ first 8 synergy cosine similarities between the
reach-and-grasp and manipulation synergies upon reordering the columns of the
manipulation synergy matrix to maximize similitude. Note, the label of the x-axis
refers to the original synergy rank based on the variance-accounted-for in the
manipulation data. Cosine similarities greater than 0.9 are highlighted in color. Each
row denotes a different subject; the last row shows the average across all subjects.
Each column denotes comparison across a different subset of tools.
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Number of Statistically Similar Synergies
Syn 1 Syn 2 Syn 3 Syn 4 Syn 5 Syn 6 Syn 7 Syn 8

All Tools 7 7 7 6 7 5 0 0
Zip tie
/ Step 1 7 7 7 4 5 5 2 0

Scissors
/ Step 2 6 6 6 4 2 0 0 0

Screwdriver
/ Step 3 7 7 7 4 6 6 1 1

Table 2.2: The number of statistically similar synergies upon reordering the columns
of the manipulation synergy (syn) matrix to maximize similitude. The total number
of subjects was 7. For brevity, only the first 8 synergies are shown. No subsequent
synergies were statistically similar.

Fig. 2-10 compares the synergy similitude after reordering the manipulation

synergies. To determine if there was an effect of synergy-order on synergy similitude,

we computed a linear regression between the synergy similarity and the significant

synergies across all subjects. This regression is shown in Fig. 2-10. Unlike Fig. 2-8,

the regression slopes were negative and significantly different from zero only for the

All-Tools and Screwdriver / Step 3 datasets but not the Zip tie / Step 1 and Scissors

/ Step 2 datasets (All Tools: 𝑝 = 1.0𝑒 − 05; Zip tie/ Step 1: 𝑝 = 0.05; Scissors /

Step 2: 𝑝 = 0.42; Screwdriver / Step 3: 𝑝 = 1.7𝑒 − 03). Note, here the coefficient

of determination of these linear regressions were in the medium range for the data

whose model did present a significant slope and in the very low range, 𝑅2 < 0.01,

for the data whose model did not present a significant slope (All Tools: 𝑅2 = 0.49;

Zip tie / Step 1: 𝑅2 = 0.09; Scissors / Step 2: 𝑅2 = 0.026; Screwdriver / Step 3:

𝑅2 = 0.28). This may indicate that there was similarity between the reach-and-grasp

and manipulation synergies, especially in the handling of the Zip tie and scissors.

However, in the all-tools and screwdriver data these results suggest that synergies

clearly present in manipulation may not be as prevalent in reach-and-grasp.

64



Figure 2-10: Synergy similitude across participants computed across each tool, upon
reordering the columns of the manipulation synergy matrix to maximize similitude.
The asterisk (*) indicates a significant slope.

Fig. 2-11. provides insight into how reordering the manipulation synergies led

to the increased incidence of statistically similar synergies (Table 2.2). Specifically,

Fig. 2-11 shows the manipulation synergy ranks averaged across subjects after the

manipulation synergies were reordered to maximize similitude; a dashed black line

demonstrates no change in synergy order. Values above this line demonstrate a

decrease in synergy-order and values below this line demonstrate an increase in
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synergy-order. That is, values above the dashed black line suggests that synergies that

were less prevalent in reach-and-grasp became more prevalent in manipulation and

values below the dashed black line suggests that synergies that were more prevalent

in reach-and-grasp became less prevalent in manipulation. In Fig. 2-11 it is readily

seen that higher-order synergies often became lower order synergies while lower-order

synergies often became higher-order synergies, especially in the screwdriver data.

This suggests that synergies that were deemed insignificant in reach-and-grasp were

important in manipulation.
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Figure 2-11: Manipulation synergy ranks after the manipulation synergies were
reordered to maximize similitude upon comparing to the reach-and-grasp synergies.
The gray line denotes the average and error bars denote the standard deviation. The
red dots are the data; larger dots represent a repetition of the data point. The
dashed black line is the direct relation between the old and new rank and represents
no change in order. Values above the dashed black line suggests that synergies that
were less prevalent in reach-and-grasp became more prevalent in manipulation and
values below the dash black line suggests that synergies that were more prevalent in
reach-and-grasp became less prevalent in manipulation.
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2.5 Discussion

In this study, we tested two hypotheses: (1) the number of synergies underlying

manipulation is the same as those underlying reach-and-grasp, and (2) the identity of

synergies underlying manipulation is different from those underlying reach-and-grasp.

We found that more synergies were required to competently describe the manipulation

data than the reach-and-grasp data. Moreover, upon comparing the kinematic hand

synergies across reach-and-grasp and manipulation, we found that the difference

was predominantly in the higher-order synergies. However, after reordering the

manipulation synergies to maximize similitude, we found that synergies clearly

present in manipulation may not be as prevalent in reach-and-grasp.

2.5.1 Emergence of Kinematic Hand Synergies

Our analysis did confirm a reduction of the hand’s operational degrees of freedom. The

first 3 synergies accounted for greater than 75% of the variance in both experimental

tasks (Fig. 2-2). This value is consistent with what has been reported in prior

literature [Mason et al., 2001,Santello et al., 1998,Santello et al., 2016,Todorov and

Ghahramani, 2004,Weiss and Flanders, 2004]. Thus, we conclude that this simplified

kinematic analysis can continue to be useful to understand aspects of motor control of

the human hand performing a functional task. Consistent with much of the synergy

work first introduced by Santello et al. [Santello et al., 1998], the first synergy, in

both of the experimental tasks presented here, was dominated by flexion of the MCP

and PIP joints (Fig. 2-4). This result has been observed across several experiments

that studied hand posture in grasping, both with and without contact [Mason et al.,

2001, Santello et al., 2002]; and even including signing in American sign language

[Weiss and Flanders, 2004]. This first synergy is generally equated to Napier’s power

grasp. A power grasp is when flexed fingers and the palm clamp down on an object

while the thumb applies counter pressure [Napier, 1956]. Typical examples of a power

grasp include gripping a hammer or holding a bottle. The presence of this synergy

in these experiments is consistent with prior studies.
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While a reduction of the hand’s operational degrees of freedom was supported

by our analysis in both experiments, interestingly, more synergies were required

to account for the same variance in the Manipulation Experiment than in the

Reach-and-Grasp Experiment (Fig. 2-3). This difference was statistically significant

when the synergies were extracted from all tools, the Zip tie alone, and the screwdriver

alone. However, this was not the case when synergies were extracted from the scissors.

We speculate that this is because, when using a pair of scissors, the finger and

thumb motion is physically constrained by the object. With the understanding that

increasing variability in motion increases the number of significant synergies, it is

plausible that the reason we saw no statistical difference in the number of significant

synergies between reach-and-grasp of the scissors and manipulation of the scissors is

because the object constrained the hand’s motion. We want to highlight that the

intuitiveness of this result reassured us that despite the challenge of noisy data and

complicated processing, our analysis didn’t detect differences when none were to be

expected.

Unlike the scissors, in the other tools studied here, more synergies were required

to account for the same variance in the Manipulation Experiment than in the

Reach-and-Grasp Experiment (Fig. 2-3). For instance, to use a screwdriver, one must

repeatedly grip and turn the object; this motion might also require some form of finger

gaiting. Similarly, to manipulate the zip tie will not require a power-grasp (synergy

1) but will require more fine-grained finger manipulation. Nonetheless, we saw the

greatest difference in the number of significant synergies when comparing screwdriver

reach-and-grasp to manipulation as screwing requires many re-grasps and finger

gaiting. We also saw a similar difference when comparing zip tie reach-and-grasp to

manipulation. Together, these results suggest that a greater variety of hand postures

was used when manipulating a tool or object than when reaching for and grasping it,

unless that tool greatly constrained hand motion. This may be because manipulation

requires more variable hand kinematics than reach-and-grasp, which also suggests that

high-order synergies may be more important in manipulation than in reach-and-grasp.

Intuitively, this would be consistent with the need for high dexterity in tasks that
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require object manipulation.

2.5.2 Reach-and-Grasp vs. Manipulation Synergies

This study compared synergies across reach-and-grasp and manipulation (Fig. 2-7).

Particular focus was centered on the diagonal values of the similarity matrices – the

synergy similitudes. These values are shown for the significant synergies in Fig. 2-8.

There it is seen that synergy similarity decreased with synergy order. Since these

higher-order synergies differed between the reach-and-grasp and the manipulation

experiments, current knowledge of higher-order kinematic hand synergies cannot

be applied reliably when the hand is performing a functional task. Considering

that higher-order synergies become significant during manipulation (Fig. 2-3), it

is important that we investigate these differences.

It is important to note that higher-order synergies are often dismissed because they

do not explain a significant portion of the variance in the data, and their minimal

contribution is typically considered indistinguishable from noise (i.e., they are near

the “noise floor”). In our data, the first synergy, irrespective of task, consistently

represented a power grasp. However, the higher-order synergies, which usually

contribute substantially to the overall action, exhibited significant differences between

reach-and-grasp and manipulation tasks. Typically dismissed as experimental error or

noise, these higher-order synergies have obscured differences between reach-and-grasp

and manipulation. In this study, we have elucidated these distinctions by refraining

from dismissing higher-order synergies. Note that investigating the diagonal values

of the similarity matrices in Fig. 2-7 assumed that synergies of the same order

should be the same. However, this need not be true. In fact, in Fig. 2-7 several

off-diagonal synergy comparisons present statistically similar synergies. To truly

test similarity between reach-and-grasp and manipulation synergies, we developed

a comparison between the synergies with the highest cosine similarity. Specifically,

in Fig. 2-9 we reordered the manipulation synergies to maximize the diagonal cosine

similarities. There, we see an increased incidence of statistically similar synergies on

the diagonal (Table 2.2). Fig. 2-11 quantifies this. We occasionally observed that
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higher order synergies increased in rank (became less important) while lower-order

synergies decreased in rank (became more important), especially in screwdriver use.

This suggests that synergies that were deemed insignificant in the reach-and-grasp

case were important in manipulation. Understanding the hand kinematics during

the grasp of a screwdriver and the use of a screwdriver may help explain this. The

screwdriver is a cylindrical object that can be picked up using a power grasp, which

is akin to synergy 1. However, to screw requires rotating the tool, which, in turn,

requires more finger-gaiting motions. Thus, in this task it would make sense that

higher-order reach-and-grasp synergies became more important during this functional

tool use, while synergy 1 became less important. This is what is shown in Fig.

2-11. This result implies that we should further investigate the typically-ignored

higher-order reach-and-grasp synergies as they may be important for manipulation

even though they are closer to the “noise floor”.

2.5.3 Limitations

Because reach was inherently incorporated into the manipulation experiment, we

could not fundamentally de-couple the two groups of synergies. It is true that reach

was incorporated in the data used to extract both groups of synergies. However, in

the first experiment the reach portion of each trial lasted 4.75s on average while the

second experiment lasted 92.73s on average. Thus, when computing the synergies

from the manipulation data they were not heavily influenced by the reach portion

of the motion. Moreover, our results showed that reach-and-grasp and manipulation

synergies differed. The fact that reach motion was incorporated in the data used to

extract both groups of synergies would make the groups of synergies more similar,

not more different.

Singular Value Decomposition was used to extract the kinematic hand synergies.

This is only one of many dimensionality reduction technique and suffers flaws;

however, it is the most commonly used in kinematic data [Santello et al., 2016].

As a data-driven approach, it is susceptible to data pre-processing effects. We aimed

to mitigate this by following the guidelines presented in [West et al., 2023]. Namely,
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we centered the data by removing the mean; this ensured that we did not obtain a

dominant first synergy that only served to center the data and thereby reduced the

number of significant synergies [West et al., 2023]. Moreover, we chose to bin the

data in a manner that was least likely to change the variance within the data; doing

so would have resulted in a synergy indicating related DOFs but without accurate

quantification of their co-variation [West et al., 2023]. While it is possible that our

results may have been influenced by the data pre-processing and processing methods,

reasonable assumptions consistent with prior literature were made in the synergy

extraction methods. This will be discussed in length in Appendix A.

Ideally, we aimed to test the hypothesis that two synergy vectors are the same,

𝑉1,𝑗 ̸= 𝑉2,𝑗. To compare the reach-and-grasp and manipulation synergies, we

computed their cosine similarity. This metric ranges from -1 to 1. However, two

synergies with a cosine similarity of -1 and 1 will span the same subspace. Therefore,

we reported the magnitude of the cosine similarity ranging from 0 to 1. However,

cosine similarity is upper bounded by unity, and consequently, its distribution violates

the implicit assumption of standard statistical tests (i.e., approximate normality).

Thus, we tested the null hypothesis that the two synergy vectors were orthogonal,

𝐶𝑖,𝑗 = 0. It is important to emphasize that falsification of this hypothesis strictly

tells us that the two compared synergy vectors do not span completely orthogonal

subspaces. Thus, the reported similar synergies in Tables 1 and 2 do not necessarily

span the same subspace; rather, they do not span orthogonal subspaces. Due to

the boundedness of the cosine similarity, the authors cannot test and comment on

whether the compared synergy vectors are statistically equal. Thus, in line with

other literature [Cheung et al., 2009, Cheung and Seki, 2021, D’avella and Tresch,

2001,Tresch et al., 2006] the authors have highlighted cosine similarity greater than

0.9.

Furthermore, it’s important to note that cosine similarity, particularly in

high-dimensional spaces, comes with known limitations. For instance, it normalizes

vectors based on their magnitudes, focusing primarily on direction rather than

magnitude, which can be problematic in scenarios where magnitude is significant.
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Additionally, sparse vectors, which are common in high-dimensional datasets, can lead

to artificially high similarity scores because only non-zero dimensions are considered.

Another challenge is that cosine similarity is undefined for zero vectors. Most notably,

in very high-dimensional spaces, the distinction between different directions can

become less meaningful, especially if the data contains a lot of noise. This is partly

due to the curse of dimensionality, where distances in high-dimensional spaces do not

always behave as intuitively expected, potentially reducing the effectiveness of cosine

similarity in distinguishing between truly similar and dissimilar items [Houle et al.,

2010]. Nonetheless, it was employed in this study because it remains one of the most

widely used methods for multidimensional comparisons [Cheung et al., 2009,Cheung

and Seki, 2021,D’avella and Tresch, 2001,Tresch et al., 2006,West et al., 2023,West,

2020, Lahitani et al., 2016, Luo et al., 2018]. Future research should aim to develop

a metric that can compare high-dimensional subspaces without encountering these

limitations.

In this study, muscle dynamics and muscle synergies were not studied. As

muscles are the human’s actuators, one could argue that we cannot make conclusions

about the human motor controller. However, considerable insight has been gained

from studying purely kinematic hand motion [Bicchi et al., 2011,Brown and Asada,

2007, Gabiccini et al., 2011, Gabiccini et al., 2013, Gioioso et al., 2013, Jarque-Bou

et al., 2019, Mason et al., 2001, Santello et al., 1998, Santello et al., 2002, Santello

et al., 2016, Todorov and Ghahramani, 2004, Weiss and Flanders, 2004]. Moreover,

studies of adaptation to visual and/or mechanical perturbation have shown that

kinematics dominate human motion planning [Flanagan and Rao, 1995, Shadmehr

and Mussa-Ivaldi, 1994]. Studying muscle dynamics during manipulation is important

and should be pursued further; however, one should not ignore the insights that can

be gained from kinematics.

2.5.4 Implications

Synergies have been used as a basis for rehabilitation post Cerebral Vascular

Accident [di Luzio et al., 2022, Singh et al., 2018]. Moreover, they have led to the
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design of several hand rehabilitation devices [Iandolo et al., 2019, di Luzio et al.,

2022, Maciejasz et al., 2014, Sierotowicz et al., 2022, Ueki et al., 2008]. The study

reported here demonstrated that there are differences between the synergies used

for reach-and-grasp and for tool-use and object manipulation. Thus, it may be

important to incorporate these differences in functional rehabilitation tasks intended

to help patients recover activities of daily living, which often require tool-use.

For upper limb reaching, the advancement of robotic rehabilitation techniques has

demonstrated greater effectiveness and better cost efficiency than standard patient

care [Fasoli et al., 2004,Krebs et al., 2003,Riener et al., 2005,Rodgers et al., 2019].

Successful deployment of upper-limb robotic rehabilitation has been attributed to

studies that have explored innate human motor function, similar to what was done

here. Ultimately, if we want to restore hand function to those who have lost it,

kinematic hand synergies can be useful; however, they must be studied in the context

of activities of daily living, which often require functional tool-use.

The results shown here also have implications for prosthetic design. Many

prostheses have used synergies to simplify design [Fani et al., 2016,Fu and Santello,

2018, Furui et al., 2019, Laffranchi et al., 2020, Li et al., 2014, Matrone et al.,

2012,Santello et al., 2016]. However, those designs have relied on the use of lower-order

grasp synergies. As demonstrated by the work reported here, higher-order grasp

synergies become important for tool-use. Thus, the previously used low-order grasp

synergies may not encompass movements required for tool-use.

2.5.5 Are synergies an epiphenomenon?

The concept of synergies has a venerable history in the motor neuroscience and

robotics literatures (for review see [Santello et al., 2016]). Confining attention to

kinematic synergies, as described above they may be defined by a time-invariant

map 𝜑(·) from a lower-dimensional control input 𝛿 ∈ R𝑚 to a higher-dimensional

configuration space 𝜃 ∈ R𝑛, where 𝑛 > 𝑚, such that 𝜃(𝑡) = 𝜑(𝛿(𝑡)). Numerical

methods such as singular value decomposition may be applied to experimental data

to identify a linear approximation to the map 𝜑(·). Is this concept insightful?

74



For example, any single action necessarily follows a path 𝑝(·) in configuration

space. A highly-skilled or well-learned action is likely to be repeatable such that

every replication of the action follows the same path in configuration space. That path

defines the coordinate of a one-dimensional (albeit likely nonlinear) subspace to which

the task is confined. Displacement along that path 𝑠 ∈ R1 defines a single coordinate.

Its time-history 𝑠(𝑡) may serve as a control input to define the configuration-space

trajectory 𝜃(𝑡) = 𝑝(𝑠(𝑡)) used for the task. Therefore 𝑝(·) defines a synergy. By this

reasoning, synergies are a necessary consequence of skill.

Moreover, distinct actions likely follow distinct paths 𝑞(·), 𝑟(·) etc. and each of

these also defines a synergy. As a result, we may predict that synergies will vary

with subject, task, and object, consistent with our findings and those of previous

researchers [Furuya et al., 2011,Jarque-Bou et al., 2019,Santello et al., 1998,Santello

et al., 2002,Weiss and Flanders, 2004]. Thus, we may conclude that the dimensionality

of a single highly-learned action should be one. Imperfect execution or noise might

lead to an apparent dimensionality greater than one. Those additional dimensions

may be useful, e.g. to absorb inevitable motor variability, but any additional

dimensions do not describe the task.

Moreover, the linearization implicit in the use of numerical methods such as

singular value decomposition may also lead to an apparent dimensionality greater

than one. This may motivate the application of nonlinear approaches in future work.

Nonetheless, this reasoning does not challenge the biological reality of synergies.

Learning a skill is loosely analogous to solving an optimization problem and is costly

in time and physical and mental effort. Storing, and retrieving, learned patterns

in the form of synergies may be a way to avoid the need to re-optimize on every

execution. But there’s no free lunch: we should expect that learning a task that

requires a configuration-space path orthogonal to 𝑝(·),𝑞(·),𝑟(·) etc. will be much

harder than learning a task that interpolates between these subspaces. That, too,

has been reported [Golub et al., 2018,Sadtler et al., 2014].

A collection of skilled behaviors need not use all regions of configuration space but

may be confined to a subspace spanned by the synergies𝑝(·),𝑞(·),𝑟(·) etc. The key to
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identifying this skilled subspace is to study tasks that require the true versatility of

human manipulation—such as wire-harnessing.

2.6 Conclusion

This study sought evidence of kinematic hand synergies during wire harness

installation – a task that involves manipulation of complex tools and objects. Human

hand motion was measured during two experiments: (1) reaching for and grasping a

tool or object and (2) manipulating those objects. In both experiments, a reduction

of the operational degrees of freedom was observed (i.e. synergies). Moreover, we

found that manipulation of a tool generally required more significant synergies than

grasp of that same tool. Nonetheless, consistent with previous literature on kinematic

hand synergies, the first synergy participated in power grasp, and the second synergy

was dominated by thumb rotation. However, upon comparing reach-and-grasp

with manipulation, we found that synergy similarity decreased with synergy-order.

Considering that higher-order synergies become significant during manipulation, it is

important that we investigate these differences; this study serves as a point of entry

to understanding them. Investigation of the human hand during functional object

manipulation may lead to better prosthetic hand design, and hand rehabilitation

techniques. If we want to restore hand function to those who have lost it we must

study hand manipulation beyond grasping.
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Chapter 3

Dynamic Primitives Describe

Limitations in Human Force

Regulation during Motion

In Chapter 2, we discussed a simplifying control technique to plan motion during

dexterous tasks. However, that chapter overlooked a key aspect of physical

interaction: force modulation. We aim to address this aspect in the present chapter.

Specifically, we inquire: How do humans control force? Are they capable of managing

force independent of motion? Contrary to longstanding assumptions in robotics, this

study reveals that humans do not modulate force and motion independently; instead,

they are intertwined through mechanical impedance.

This chapter is an adapted version of a paper published in IEEE Robotics and

Automation Letters titled, “Dynamic Primitives Limit Human Force Regulation

during Motion” [West et al., 2022a]. This work was done in collaboration with James

Hermus, Meghan Huber, Pauline Maurice, Neville Hogan, and Dagmar Sternad.

A video summary of this chapter can be found at

https://www.youtube.com/watch?v=RRfWe9KVSDY
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3.1 Introduction

The majority of human neuro-motor control research to date has focused on the

control of motion during free unconstrained reaching without physical contact (for

review see [Gulletta et al., 2020,Campos and Calado, 2009]). In this case, relating a

planned motion to an actual motion is sufficient to describe the control system. In

robotics, the mathematics underlying motion control is well understood [Slotine and

Asada, 1992]. However, most tasks that humans and robots perform require physical

interaction with the external environment; for such interactive tasks, motion control

alone is insufficient.

During physical interaction, bidirectional forces between the actor and the

environment critically affect the behavior of the coupled system. If humans regulate

motion during free reaching, a simple extension of this idea to contact tasks may be

to regulate both force and motion. In robotics, hybrid control allows for simultaneous

and independent control of both motion and force in complementary subsets of the

workspace [Mason, 1981,Raibert and Craig, 1981]. In human motor control, it is yet

unresolved whether humans can control force independent of motion.

Several studies in human motor neuroscience have reported findings in support

of such hybrid control. For example, Chib et al. [Chib et al., 2009] found that

hybrid motion / force control can describe how humans performed an interaction

task in a virtual force field. Casadio et al. [Casadio et al., 2015] presented and

experimentally validated a computational model of how the neural system may

combine two independent modules that separately control motion and force. Further,

neural activity in the motor and parietal cortex of non-human primates indicate that

there are separate modules for the control of force and motion [Georgopoulos et al.,

1992,Hamel-Pâquet et al., 2006,Sergio and Kalaska, 1998].

On the other hand, it has been shown that the central nervous system (CNS)

contains a controller that modulates the coupling of force and motion [Kolesnikov

et al., 2011,Piovesan et al., 2019]. Other studies demonstrated that humans modulate

the relation between motion and force during upper limb reaching in unstable force
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fields [Burdet et al., 2001,Milner and Franklin, 2005,Osu et al., 2003,Takahashi et al.,

2001]. Additionally, our own previous research showed that exerted force depended on

the velocity profile when grasping and following a robot manipulandum. Specifically,

participants were asked to trace the motion of a robot manipulandum without exerting

force as it moved on an elliptical path with varying velocity profiles [Maurice et al.,

2018]. If force can be controlled independent of motion, the velocity profile should

not matter; however, it did.

This study aimed to examine human control of physical interaction that could

resolve these seemingly contradictory results. We conducted an experiment in which

participants physically interacted with a motion-controlled robot to test whether

humans could regulate force independent of motion. We refer to this independent

control as “direct force control” (Fig. 3-1a). Explicitly, direct force control applies

an actual force as a function of only a planned force. This function is an operator

that may be dynamic and nonlinear. If participants can regulate force independent

of motion, direct force control can be accepted as a plausible schema for human

physical interaction. Conversely, if humans are unable to decouple force from motion,

an alternative hypothesis is “indirect force control.” With indirect force control, a

planned force 𝑓𝑝(𝑡) may still exist in the forward path, but an impedance term 𝑍{·}

is needed to relate the difference between input motion 𝑥0(𝑡) and actual motion 𝑥(𝑡)

to the output force 𝑓(𝑡) (Fig. 3-1b). The core feature of indirect force control is that

force depends on motion.

The direct force control hypothesis leads to a testable prediction: Errors in

contact force will be independent of motion. Thus in this experiment, participants

were instructed to apply a specific constant force on a robot manipulandum in its

direction of motion as it moved along an elliptical path. To give participants the

best opportunity to complete the task, the robot moved with a velocity profile that

matched human movement preferences, i.e., angular velocity scaled with curvature

with a power of 2/3 [Maurice et al., 2018] [Zago et al., 2018]. Despite visual feedback

and some practice, errors in exerted force persisted and were dependent on motion,

suggesting (1) a coupling of force and motion, and (2) the existence of an underlying
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Figure 3-1: (a) Direct force control. Applied force is a function of a planned
force that is independent of motion. (b) Indirect force control. Applied force is
a function of a planned force but also depends on motion. Further details are in the
Discussion section.

structure in the feedforward motion planning signal. Additional analysis of previous

data from [Maurice et al., 2018] further validated the current results. In sum, this

work showed that interactive dynamics are significant and of particular concern in (1)

quantification of human performance and in (2) physical human-robot interaction.

3.2 Methods

3.2.1 Participants

Eleven healthy right-handed individuals (3 females, 8 males; ages from 19 to 35

years old) participated in the experiment for some compensation. All participants

signed a consent form which explained the experiments’ procedures. The experimental

protocol was approved by the Institutional Review Boards of Northeastern University

and the Massachusetts Institute of Technology.
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3.2.2 Experimental Procedures

Task and Instructions

Participants were instructed to hold the handle of a moving robotic manipulandum

(HapticMaster) [Linde et al., 2002] and apply a constant 5N force in the direction of

robot motion (i.e., tangential direction) as it traversed an elliptical trajectory in a

horizontal plane (Fig. 3-2a).

Participants performed the experiment seated and held the robot through a

vertical handle which could pivot around its vertical axis; the pivot decoupled the

robot end-effector orientation and the participant’s wrist orientation (Fig. 3-2b).

Participants were positioned such that when holding the robot handle at the 270∘

position of the ellipse (Fig. 3-2d), the right upper arm hung downward slightly away

from the torso. This position aligned the forearm with the minor axis of the ellipse.

The robot height was adjusted such that the forearm was approximately parallel

to the ground. This resulted in an angle between the upper arm and forearm of

approximately 90∘ (Fig. 3-2a-b).

Visual Display

Participants sat approximately 2.2m in front of a projection screen (height: 1.8m,

width: 2.4m). In conditions with visual feedback, two horizontal bars appeared on

the screen (Fig. 3-2c). A red horizontal bar moved vertically to indicate the tangential

force (averaged over 80ms) applied by the participant onto the robot; the stationary

white bar indicated the desired tangential force of 5N. Otherwise, the screen was

black.

Control of Robot Motion

The robot handle was commanded to move counterclockwise along an elliptical path

(major axis = 30cm, minor axis = 10cm) on a horizontal plane with a period of

3s (Fig. 3-2d). The velocity profile of the robot handle followed the so-called 2/3

power-law relation [Maurice et al., 2018] [Zago et al., 2018] between path curvature
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Figure 3-2: Experimental setup. (a) Top-down view of the experimental setup.
Participants were instructed to hold the handle of a moving robotic manipulandum
and apply a constant force in the direction of the robot’s motion. The elliptical path
of the robot endpoint is displayed on the figure for clarity. However, participants
did not see any visual display of the robot path. (b) Robot handle used to decouple
human wrist and robot end-effector orientations. (c) To provide visual feedback, the
projection screen displayed a stationary white bar indicating the target tangential
force of 5N and a moving red bar indicating the current applied tangential force.
Visual feedback was given during Block 1V and Block 2V. Otherwise, the screen was
black. (d) Elliptical trajectory of the robot endpoint (i.e., handle) in the horizontal
plane. The robot manipulandum moved counterclockwise and followed a velocity
profile that was in accordance with the two-thirds power law [Zago et al., 2018].
Tangential velocity is shown by color.

82



and angular velocity (Fig. 3-2d), decreasing in highly curved portions and increasing

in less curved portions. The position of the robot handle was controlled with a

Cartesian PD controller; a high proportional gain was used such that deviation from

the desired trajectory was negligible. The desired position of the robot was updated

at 700Hz, and an internal force control loop ran at 2kHz.

3.2.3 Experimental Design

To assess the effect of practice and visual feedback on force control, participants

performed four experimental blocks; each block consisted of 15 trials. In each trial,

the robot continuously traversed the elliptical path four times with a period of 3s per

cycle; each trial lasted 12s. Blocks 1V and 2V presented visual feedback as shown

in Fig. 3-2c. Blocks 1NV and 2NV did not present visual feedback. Participants

always performed the four blocks in the following order: 1V, 1NV, 2V, 2NV. In all

four blocks, participants were instructed to maintain a constant force of 5N in the

tangential direction. At the start of each trial, participants heard three short beeps

through a headset, after which the robot began to move. Between blocks, participants

were allowed to take a break if needed.

A familiarization block, referred to as Block F, preceded the four experimental

blocks. It also consisted of 15 trials of 12s each. There, participants were instructed

to maintain a constant level of force in the tangential direction of the robot motion.

The exact level of force applied was not specified and there was no visual feedback.

After Block F, participants were given 60s to familiarize themselves with the visual

feedback. During that time, the robot was in a stationary position and participants

could apply forces against the robot. In total, the experiment lasted just over an

hour.

3.2.4 Dependent Measures and Data Processing

The force that participants applied to the robot handle was measured at ∼560 Hz

with a 3 DoF force sensor mounted at the robot end effector. In each trial, the
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tangential component of the force applied by the human to the robot was calculated

and resampled as a function of robot position along the elliptical path at a resolution

of 1∘.

Angular position along the elliptical path was defined using the eccentric

anomaly1, 𝐸, such that 𝐸 = 𝑎𝑡𝑎𝑛(𝑎𝑦/𝑏𝑥), where 𝑎 and 𝑏 were half the length of

the major and minor axes of the ellipse, respectively. 𝑥 and 𝑦 were the magnitudes of

the position vector in the direction of the major and minor axes in Cartesian space,

respectively.

For each trial, task performance was summarized by calculating the

root-mean-square (RMS) of force error. Force error was defined as the difference

between the actual tangential force and the target tangential force of 5N. The

tangential force was resampled as a function of robot position along the elliptical

path at a resolution of 1∘. To avoid the potential influence of transient behavior, the

first cycle of each trial was omitted in the calculation of the RMS error.

3.2.5 Data Analysis and Statistics

All data were processed and statistical analyses were performed using custom scripts

in MATLAB. The significance level for statistical tests was 𝛼 = 0.05. Unless stated

otherwise, only data from the four experimental blocks (i.e., Blocks 1V, 1NV, 2V,

and 2NV) were included in the statistical analyses.

Performance Improvements

Prior to testing the effects of practice and feedback in the four blocks, performance

improvements were assessed within blocks across trials by calculating linear

regressions between RMS force error and trial number. Performance improvement

was indicated if the slope was different from zero, i.e., the 95% confidence interval of

the slopes did not include zero.
1The eccentric anomaly is one of three angles (or “anomalies”) identified by Johannes Kepler in

his study of celestial mechanics to describe the position of a body that is moving along an elliptical
orbit [Kepler, 1609]. The other two angles are the true anomaly and the mean anomaly.
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To determine where participants’ performance reached steady state, the regression

slopes between trial number and the average RMS force error across participants were

calculated iteratively for the last 15, 14, 13, trials and so forth until an insignificant

slope was found. This occurred when the linear regression was computed over the

last 9 trials (i.e. from trial 7 to 15). The lack of a significant slope with the RMS of

force error and trial number justified averaging measures over the last 9 trials within

a block.

To assess whether visual feedback or practice across the 2 blocks influenced

performance, the block means of all participants were calculated over the steady

state portion of each block. These block means of RMS force error were submitted

to a 2 (block) x 2 (feedback) repeated-measures ANOVA.

Existence of Motion-Dependent Force Errors

To assess the presence of motion-dependent patterns in the force error, the

auto-correlation function of force error (as a function of robot angular position) was

calculated for each trial. The lag with the maximum peak in the auto-correlation

function (hereafter referred to as maximum lag) and its corresponding auto-correlation

coefficient (maximum auto-correlation coefficient) were identified.

Two clusters were identified in the distribution of lags at maximum

auto-correlation and their means were determined. Trials where the maximum

auto-correlation coefficient was less than 0.1 were omitted from the analysis of position

dependency of force error (4 out of 825 trials). From visual inspection, these low

maximum auto-correlation coefficient values resulted from isolated uncharacteristic

changes in RMS force error during the trial. They also occurred at lag values that

were significant outliers.
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Figure 3-3: Mean RMS of force error across participants in each trial for (a)
all experimental blocks in the main experiment, and (b) Experiment 0N.
Yellow dots depict the average value across participants. The shaded region depicts
±1 standard deviation across participants. An asterisk (*) indicates a significant
linear relation between the mean RMS force error and trial number calculated across
participants for each block.

3.3 Results

3.3.1 Performance Improvements

Change in RMS Force Error Within Blocks

Inspection of the grouped time series of force error revealed that subjects showed a

consistent decline of the force error in the first part of Block 1V (Fig. 3-3a). The

iteratively computed linear regressions between the average RMS force error across

participants and trial for the last 15, 14, 13, and so forth trials identified that the force

error values in Block 1V plateaued when calculated over the last 9 trials (i.e., from

trial 7 to 15). From trial 7 onwards the regression slopes did not differ from zero. As

this initial drop of error seemed to be a result of familiarization, subsequent analyses

only examined the last 9 trials of all four blocks to evaluate the errors reached in each

condition.

Effect of Practice and Visual Feedback on RMS Force Error Across Blocks

To statistically evaluate whether visual feedback and practice had a significant

effect on the force error, a 2 (block) x 2 (feedback) repeated-measures ANOVA was

conducted. The force error revealed a significant interaction (𝐹1,10 = 15.74, 𝑝 =
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2.66𝑒 − 03) as the mean RMS error decreased from Block 1V (𝑀 = 3.63N, 𝑆𝐷 =

1.12N) to Block 1NV (𝑀 = 3.30N, 𝑆𝐷 = 1.12N) and increased from Block 2V

(𝑀 = 3.08N, 𝑆𝐷 = 1.32N) to Block 2NV (𝑀 = 3.86N, 𝑆𝐷 = 1.96N) (Fig. 3-4a).

However, neither the main effect of block (p = 0.99), nor the main effect of feedback

(p = 0.60) were statistically significant. Recall, all subjects completed the experiment

in order: Block 1V, 1NV, 2V, 2NV. Thus, the increase in mean RMS of force in Block

2 was likely the result of cognitive or physical fatigue as the experiment was quite

long.

Figure 3-4: Mean RMS of force error from the last 9 trials for (a) all
experimental blocks in the main experiment, and (b) Experiment 0N.
Yellow dots depict individual participants. Error bars depict ±2 standard errors of
the mean. The mean RMS of force error was significantly higher in all experimental
blocks of the main experiment compared to Experiment 0N (Table I).
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3.3.2 Existence of Motion-Dependent Force Errors

Given this indifference to feedback and practice, the time series of force error were

inspected. As illustrated by the raw force data shown for a representative participant

in Fig. 3-5, force error was periodic with pronounced peaks at multiples of 180∘ in

all blocks. The means of each cluster identified in the maximum lag data of trials

in Blocks 1V, 1NV, 2V, and 2NV were 179.3∘ and 359.3∘ (Fig. 3-6a). The average

maximum auto-correlation coefficient was 0.43 (𝑆𝐷 = 0.13). Trials with maximum

lags of 360∘ indicate that the peaks in force error at half and full cycle were different,

while the maximum lag at 180∘ indicates that the two peaks in force error were

similar. Analyses of individual participants revealed that five subjects showed higher

force applied at 180∘ and six subjects showed higher force applied at 360∘. Taken

together, these results indicate that force error strongly depended on the phase of the

oscillatory robot motion.
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Figure 3-5: Raw force data in each block for a representative participant.
For each of the 5 blocks in the main experiment, plots of tangential force over robot
angular position are shown for the last 3 cycles of every trial. The tangential force
was resampled as a function of robot position along the elliptical path at a resolution
of 1∘. Each trial is depicted with a thin, colored line, and the average across all trials
is depicted with a thick, black line.

Given this pronounced periodicity in the experimental blocks that specified 5N

force, we also examined whether this periodicity was present spontaneously. The same

autocorrelation analyses were run on the trials of the familiarization block (Block F).

Fig. 3-6b shows two clusters with mean values of 179.9∘ and 359.5∘. The average
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maximum auto-correlation coefficient was 0.53 (𝑆𝐷 = 0.12). As illustrated in Fig.

3-6b, these results give strong evidence for a spontaneous coupling of motion and

force.

Figure 3-6: Evidence of motion-dependent periodic force errors for all trials
in (a) Blocks 1V, 1NV, 2V, and 2NV of the main experiment, (b) Block F
of the main experiment (c) Experiment 0N. Histogram of lags of maximum
autocorrelation (referred to as maximum lag) values measured in units of robot
angular position. In all conditions, two clusters were identified. The solid lines
indicate the mean of each cluster, and the dashed lines depict ±1 standard deviation
of each cluster.
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3.4 Additional Results

To further validate the existence of motion-dependent force errors, similar analyses

were performed on data collected in a previously published study of human-robot

interaction by Maurice et al. (see [Maurice et al., 2018] for full experimental details).

The objective of that study was to examine how humans adapt to different velocity

patterns in elliptic planar robot movements, identical to the ones used in this study.

However, instead of being instructed to apply a constant 5N force in the tangential

direction, participants were instructed to minimize the total force magnitude applied

to the robot end effector (i.e., apply 0N total force). Participants (𝑁 = 6) performed

10 trials, where each trial consisted of 4 cycles as in the present study. No visual

feedback was provided to participants at any point in the experiment. This dataset

is referred to as Experiment 0N.

To allow comparison with the results of the main experiment, force error was

defined as the difference between the actual tangential force and the target tangential

force of 0N. Otherwise, all data processing methods and dependent measures were

identical.

3.4.1 Performance Improvements

The linear regression between the average RMS force error calculated across

participants and trial numbers was not statistically significant, indicating no evidence

of change in task performance with practice (Fig. 3-3b).

3.4.2 Existence of Motion-Dependent Force Errors

Two clusters were identified in the maximum lag data. The means of each cluster were

173.5∘ and 359.8∘ (Fig. 3-6c), and the average maximum auto-correlation coefficient

was 0.41 (𝑆𝐷 = 0.11). Despite the difference in task instruction, these results were

strikingly similar to those in the main experiment. Most importantly, they indicate

that the force errors were also motion-dependent.
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𝑡 statistic
(df = 15) 𝑝 value

Block 1V - Experiment 0N 4.40 5.21𝑒− 04
Block 1NV - Experiment 0N 3.79 1.77𝑒− 03

Block 2V - Experiment 0N 2.95 9.87𝑒− 03
Block 2NV - Experiment 0N 2.02 8.62𝑒− 03

Table 3.1: Statistical results comparing mean RMS of force error between main
experiment and experiment 0N

3.4.3 Differences in Force Error Magnitude

While the force patterns were dependent on motion in both experiments, the

magnitude of the force errors differed. Independent 𝑡-tests compared the mean RMS

force errors from each block of the main experiment with those of Experiment 0N.

Note that in all cases, the mean RMS force error was calculated over the last 9

trials for consistency. As summarized in Table I and depicted in Fig. 3-4a-b, the

mean RMS force error was significantly higher in all blocks of the main experiment

(Bonferroni adjusted 𝛼 = 0.05/4 = 0.0125). Despite more practice and added visual

feedback, participants who aimed to apply 5N force on the moving robot performed

considerably worse than those instructed to minimize total force applied.

3.5 Discussion

This work investigated humans’ ability to directly modulate force during motion.

Subjects were asked to apply a constant force on a robot manipulandum moving

along an elliptical path. The hypothesis of direct force control predicted that errors

in contact force would be independent of motion. Here, the force errors observed

throughout the entire main experiment depended on motion. Force error showed a

periodic pattern consistent with the periodicity of the path; it varied with motion.

After initial performance improvements, participants did not reduce force errors with

practice, even when visual feedback was provided. Motion-dependent patterns in

force error were also observed in Experiment 0N (i.e. Experiment 1B in [Maurice

et al., 2018]), further validating the main results. These findings suggest that force
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and motion are coupled as schematically shown in Fig. 3-1b.

3.5.1 Force Error

In the main (5N) experiment subjects were given visual feedback of their tangential

force in two of the blocks (Fig. 3-2c). In contrast to static tasks, where visual feedback

enables subjects to apply a constant force quite accurately [Massey et al., 1992], the

elliptic motion of the robot manipulandum in this study significantly compromised

the subjects’ ability to regulate force. Subjects did not eliminate residual errors,

which varied periodically with motion.

Interestingly, the overall magnitude of force errors was significantly lower when

the target force was lower (Fig. 3-4). There are several plausible explanations why

this occurred. One possibility is that greater force applied induced higher noise (i.e.,

signal dependent noise) [Osu et al., 2004]. Another possibility is that greater force

applied induced higher hand impedance [Lipps et al., 2020], which would amplify any

errors between the input and actual trajectories. This would provide further support

for indirect force control (Fig. 3-1b).

Nonetheless, production of actual force 𝑓(𝑡) that equals input force 𝑓0(𝑡) is possible

using the indirect force control strategy of 𝑓(𝑡) = 𝑓0(𝑡) + 𝑍{𝑥0(𝑡) − 𝑥(𝑡)} when

𝑍{𝑥0(𝑡) − 𝑥(𝑡)} = 0 (Fig. 3-1b). This can be achieved in one of two ways: (1) zero

interaction dynamics and/or (2) a simultaneous prediction of the input2 trajectory

𝑥0(𝑡) that matches the actual trajectory 𝑥(𝑡). Thus, it is critical to note that if

motion-dependent force errors were not observed, it would be impossible to distinguish

between the direct and indirect force control strategies. However, the force error we

observed was dominated by motion dependency (Fig. 3-5). Specifically, the force

error was periodic with maximum auto-correlation at lag corresponding to the 180∘

and 360∘ ellipse positions (Fig. 3-6).

These motion-dependent force errors were also observed in both the familiarization

Block F of the main experiment, where subjects were instructed to apply a constant
2This input trajectory has been referred to as the zero-force trajectory, as it is the motion that

would occur in the absence of external forces.
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tangential force, (Fig. 3-6b) and Experiment 0N (Fig. 3-6c), where subjects were

instructed to apply zero force. In both, subjects did not receive any visual feedback.

Despite some practice with and without visual feedback, the motion dependency of

the applied force persisted throughout the main experiment (Fig. 3-5). This robust

observation suggests an underlying structure in humans’ ability to regulate force

during motion that limits the performance of this task.

3.5.2 Dynamic Primitives

Accurately controlling force would require the central nervous system to acquire

an “internal model” of the task with which to “compute” predictive forward-path

control inputs. The theory of dynamic primitives proposes that motor behavior,

with and without physical interaction, is constructed using a limited set of primitive

dynamic behaviors that are the “building blocks” of more complex actions [Hogan and

Sternad, 2012, Schaal and Sternad, 2001, Schaal, 2006,Degallier and Ijspeert, 2010].

These “building blocks” allow for a detailed plan of time-varying neuro-muscular

activity to be abstracted to the parameters of a limited set of stereotyped motor

patterns. Rhythmic movements can be generated by oscillations, one class of dynamic

primitives. The interactive primitive is mechanical impedance. The parameters

of these “building blocks” may be encoded; this may facilitate human learning,

performance, and retention of complex skills.

Dynamic primitives do not preclude arbitrary patterns of force production. A

sufficiently accurate internal model might be used to compute both 𝑓0(𝑡) and the

corresponding 𝑥0(𝑡) (Fig. 3-1). However, if the parameters of oscillatory primitives

used to plan the motion were limited, the time-course of force production would also

be limited. Periodic force errors in our experimental results suggest that the controller

appears to be content with “good-enough” performance, which can be obtained using

a limited set of “primitive” oscillations and a sufficiently low mechanical impedance.

Thus motor behavior constructed by dynamic primitives may result in performance

limitations – such as the observed imperfect, periodic force regulation reported here

(Fig. 3-5).
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Other results support this account. A combination of two oscillations (e.g. in

two degrees of freedom) generate the two-thirds power law relation between path

curvature and angular velocity. Previous studies of crank turning suggest that

during physical interaction humans generate an elliptical zero-force trajectory which

exhibits a coincidence of speed and curvature extrema [Hermus et al., 2020b]. These

observations are also consistent with the work of [Maurice et al., 2018, Schaal and

Sternad, 2001, Huh and Sejnowski, 2015, Hermus et al., 2020a]. The smallest force

errors in [Maurice et al., 2018] were observed when the velocity profile of the robot

followed the two-thirds power-law relation. Moreover, position-dependent errors

are evident in the results of other studies on constrained motion [Koeppen et al.,

2017,Ohta et al., 2004,Russell and Hogan, 1989]. However, to our knowledge this is

the first time that position-dependent force errors have been systematically quantified

during a force regulation task with substantial motion.

3.5.3 Limitations

In the main experiment, participants experienced the task for approximately one

hour (300 cycles). It is possible that participants could learn to better regulate their

force with additional practice (e.g., over multiple days). However, investigation of

extensive practice was not the goal of our work. Humans regularly perform a variety of

novel forceful interaction tasks with ease and apparently without requiring long-term

practice. In fact, task performance slightly worsened at the end of practice in the

main experiment, possibly indicating that fatigue set in. Hence, this study aimed

to identify the performance that might be expected from intuitive and spontaneous

human-robot interaction.

Force errors might also be ascribed to poor perception of the robot’s motion.

However, the motion slowly (∼0.33Hz) followed a large elliptical path of 66.8cm in

circumference. Additionally, if errors in the perception of the robot’s motion led to

force errors, we would expect to see differences in error between the blocks that did

and did not have visual feedback. Fig. 3-4 demonstrates that this was not observed.

Motion dependent deviations from the instructed force were persistent throughout
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the entire main experiment (Fig. 3-5, & 3-6a-b).

It is also possible that there may have been too much cognitive demand from

mapping the vertical feedback display to the horizontal force. While this argument

cannot be directly refuted from the results reported here, it is unlikely to account

for our main result. Fig. 3-6b shows that subjects force error was motion dependent

even before visual feedback had been provided. In short, the position dependence of

force error was consistent throughout the main experiment, despite the presence of

visual feedback.

3.5.4 Implications

Understanding the preferred control strategy employed by humans may guide the

design of robot controllers to manage physical interaction. A roboticist may draw

upon the proposed “building blocks” to program a simple controller to achieve a

complex task [Ijspeert et al., 2002, Stulp et al., 2012, Peters and Schaal, 2006]. For

example, a controller based on dynamic primitives has been used successfully (in

simulation) to control a 2 DOF arm to manipulate a dynamically complex whip with

50 DOF in a targeting task [Nah et al., 2020]. Furthermore, the human body has a

large number of redundant degrees of freedom. Kinematic redundancy has commonly

been viewed as a difficult challenge to overcome, especially if control is performed via

conventional optimization-based techniques. However, redundant degrees of freedom

may be controlled by superposition of mechanical impedance primitives. Remarkably,

unlike optimization-based methods, as the number of redundant degrees of freedom

increased, control based on the superposition of impedance primitives improved; in

effect, with greater redundancy control became easier [Hermus et al., 2021].

The account of humans’ motor control strategy proposed here may be

especially useful to design controllers for robots intended to interact physically

with humans. This paper demonstrated that errors in human force regulation

may result from limitations in the way humans compose motor actions (e.g.,

possibly through dynamic primitives). These limitations should be taken into

consideration in all applications involving physical human-robot interaction, including
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amputation prostheses, assistive exoskeletons, robot-aided rehabilitation, and

physical human-robot collaboration.

3.6 Conclusions

In this work, we scrutinized a pervasive assumption: force and motion can be

controlled independently (an idea referred to here as direct force control). To

examine this assumption, subjects were asked to apply a constant force on a robot

manipulandum that moved along an elliptical path with a speed profile consistent

with the preferred pattern of human motion (the two-thirds power law). Results

showed that subjects were unable to control force accurately during motion, despite

some practice and the presence of visual feedback; errors in force were periodic

in response to the periodic motion of the robot. These results point towards an

indirect force control formulation (Fig. 3-1b), in which commanded motion acts

through mechanical impedance to evoke force. Furthermore, the periodic pattern

of path-dependent force errors was consistent with commanded motion composed

of oscillatory primitives. Taken together, these findings suggest that a relatively

simple mathematical model combining dynamic motion primitives with mechanical

impedance, as an additional primitive, is competent to describe how humans control

contact and physical interaction. A quantitative model is especially important for

designing devices that physically collaborate with humans.
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Chapter 4

Stiffness Can be Perceived via Visual

Observation of Path Information

In Chapter 3, we established that humans cannot independently manage force and

motion. Rather, they are coupled via mechanical impedance. The next key question

becomes: Is impedance essential to humans’ internal model? One way to tease this

out is to draw upon the well-cited human motor action motor perception relationship

[Meltzoff and Moore, 1997,Grush, 2004,Bandura, 1986] and ask: Can humans perceive

mechanical impedance without access to force information? This question is addressed

in this chapter, where we demonstrate that an aspect of mechanical impedance,

stiffness, can be perceived without contact. Moreover, we illustrate that stiffness

estimates are made primarily through inferring path information. These results not

only provide insight into the mechanisms underpinning human motion perception but

also carry significant implications for the robotics and rehabilitation fields.

This chapter is an adapted version of a paper published in PLOS Computational

Biology titled, “Role of path information in visual perception of joint stiffness” [West

et al., 2022b]. This work was done in collaboration with Meghan Huber and Neville

Hogan.

A video summary of this chapter can be found at:

https://www.youtube.com/watch?v=-bbXeqru7b0
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4.1 Introduction

When observing another human, we can only see their overt behavior (e.g., motion);

we cannot perceive the underlying neural signals that generate the behavior. Yet

humans have an astonishing ability to extract latent information from visually

observing the movement of others (for review, see [Blake and Shiffrar, 2007]). This

impressive ability has been best shown in a plethora of point light animation studies,

in which subjects were shown the motion of only a small subset of points on the

body. Even from such sparse motion information, humans can easily determine

intention from arm movement [Pollick et al., 2001], distinguish emotion from patterns

in dancing [Walk and Homan, 1984], and identify individuals from gait patterns [Loula

et al., 2005]. In the context of motor learning, Mattar and Gribble [Mattar and

Gribble, 2005] showed that subjects who observed the motion of other humans

reaching in an unseen force field subsequently performed better when reaching in

a similar unseen force field. That study demonstrated humans’ ability to learn

about novel force environments solely based on visual observation of kinematics

during physical interaction. As a whole, these studies demonstrate that humans

can determine latent information from visual observation of motion; extrapolating, it

may be possible that humans can interpret underlying control signals used to generate

motion too.

Aligned with these results, in previous work we found that humans could infer

dynamic properties, specifically joint stiffness, from multi-joint limb motion [Huber

et al., 2017, Huber et al., 2019]. In the prior study, subjects observed the motion

of a simulated stick-figure, two-link planar arm on a computer screen and then

estimated its stiffness on a numeric scale. To mimic aspects of human neuromotor

control, the arm movement was driven by the superimposition of a hand-space

mechanical impedance controller and a joint-space mechanical impedance [Hogan,

2017], where mechanical impedance is characterized mathematically by the dynamic

relation between motion and a resultant force [Hogan, 1985a,Hogan, 1985b,Hogan,

1985c]. Results showed that subjects’ stiffness estimates positively correlated with
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the joint stiffness values used in the control policy, indicating that they could estimate

changes in joint stiffness. Remarkably, this was possible without force information or

explicit knowledge of the underlying limb controller. It is impossible to unequivocally

quantify features such as limb stiffness from motion alone. Thus, humans must have

used prior knowledge to estimate latent information from visual observation of motion.

To estimate limb stiffness, for instance, their prior knowledge had to be congruent

with the relation between limb stiffness and motion produced by the control policy

used to drive the simulated limb. However, there are still open questions regarding

the form of the prior knowledge used and how it was acquired.

One possibility is that shared resources are used for action execution and action

perception [Meltzoff and Moore, 1997,Grush, 2004,Bandura, 1986]. The existence of

mirror neurons—neurons in the premotor cortex that respond both when a subject

performs an action and observes another person perform that same action—supports

this notion [Gallese and Goldman, 1998]. Behavioral studies showing that infants

[Meltzoff, 2002] and adults [Wolpert et al., 2011] learn from observing and imitating

the motor behavior of others also indicates a strong link between action and

perception. Importantly, this relation appears to be bi-directional [Hecht et al., 2001]

that is, both transfer of knowledge from perception to action and from action to

perception exists. Considering this relation, studying how humans perceive movement

can inform how humans produce movement.

The possibility that humans used knowledge of their own neuromotor system to

perform the visual-perception-of-stiffness task suggests that the controller used to

simulate the arm motions was an adequate approximation of neuromotor control of

upper limb movements. In the previous experiments, the simulated arm movements

were produced using a motor controller built on dynamic primitives as proposed by

Sternad and Hogan [Hogan, 2017,Hogan and Sternad, 2012]. The authors proposed

that encoding behavior in terms of primitive actions can simplify the control of the

otherwise complex neuromuscular system. Specifically, the prior simulations were

a composition of two mechanical impedances, one referenced to a nominal joint

configuration, the other referenced to an underlying oscillatory motion. Humans’
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ability to estimate stiffness from purely visual information indicates a relation between

motor action and motor perception. Moreover, it demonstrates that some of the

‘primitive’ elements believed to underlie motor production (in this case stiffness) also

figure prominently in sensory processing and perception.

While the composition of motor behavior with dynamic primitives may serve

as a competent model of motor generation and perception, how motor behavior is

represented in the nervous system remains an open question. Extensive research shows

that parameters such as motion and force are correlated with neural activity, but we

have limited understanding of how they are integrated to generate motor commands

or interpret motor behavior (for review, see [Branco et al., 2019]). Furthermore, there

is evidence to show that aspects of mechanical impedance are also correlated with

neural activity [Haruno et al., 2012]. However, it is unclear how, or even whether,

mechanical impedance is encoded in the nervous system. For instance, it is possible

that the prior knowledge subjects used to estimate stiffness in our previous work

included other aspects of mechanical impedance such as velocity-dependent force

(damping). The goal of the study presented here was to further probe the prior

knowledge humans use to estimate changes in limb stiffness from visual observation.

Specifically, we investigated the role of temporal information in the visual perception

of stiffness.

Highly regular patterns exist in the temporal aspects of human motor behavior.

When humans generate motion, it is commonly observed that their tangential hand

velocity changes logarithmically with the radius of curvature of its path, the so-called

1/3 power law (also commonly referred to as the 2/3 power law, depending on

formulation) [Huh and Sejnowski, 2015, Viviani and Flash, 1995]. Furthermore,

removing this temporal pattern worsens motion perception. For instance, humans

perceive motions that follow the 1/3 power law to be more natural [Bidet-Ildei et al.,

2006] and uniform [Viviani and Stucchi, 1992]. They can also anticipate the motion

of a system more accurately when it follows the 1/3 power law [Kandel et al., 2000b].

Additionally, Dayan et al. [Dayan et al., 2007] found stronger and more extensive

neural responses, especially in motor-related areas, when humans perceived motion
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that followed the 1/3 power-law compared to motion that did not. Maurice et

al. [Maurice et al., 2018] also showed that humans can control physical interaction

with a robot better when its velocity profile follows the 1/3 power law. Moreover, both

velocity magnitude (i.e., speed) and direction are also well-correlated with the motor

cortical activity of the brain [Moran and Schwartz, 1999]. Thus, temporal information

appears to play a key role in biological motion perception and understanding.

Given the important role of temporal patterns in the generation and perception

of human motor behavior, we hypothesized that changing the velocity profile of the

simulated arm without changing its path would hinder subjects’ ability to estimate

limb stiffness from visual observation. Conversely, if changing the velocity profile

had no effect, it would suggest that temporal information is at least subordinate to

path information. Here, in Experiment 1, subjects viewed simulated arm motions in

which the joint paths varied with simulated stiffness as determined by the dynamic

simulation; however, the simulated velocity profiles were modified in three different

ways. Counter to our hypothesis, the presence and type of velocity manipulation

did not significantly affect subjects’ ability to estimate limb stiffness. Given these

results, we conducted a follow-up experiment to determine if temporal information

had any influence on the perception of stiffness. Thus, in Experiment 2, subjects

observed simulated arm motions that all followed the same joint path but with

different velocity profiles. Subjects perceived simulations with a veridical velocity

profile to be less stiff than that of a non-veridical velocity profile; but there was no

difference in subjects’ stiffness estimates of simulations that followed a non-veridical

velocity profile. Together, these results suggest that while temporal information may

influence humans’ stiffness perception, path information is the predominant factor

used by humans to visually estimate changes in limb stiffness. These observations

provide further insight into humans’ representation of motor behavior and how

humans interpret and learn from the motor actions of others.
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4.2 Experiment 1: Methods

4.2.1 Ethics Statement

A total of 30 subjects (15 males and 15 females with a mean age of 25.5 ± 5.6

years) took part in Experiment 1 (10 in each of the 3 experimental conditions).

Subjects had a variety of educational backgrounds, and none had any prior experience

with the experimental task. All subjects gave informed written consent before

the experiment. The experimental protocol was reviewed and approved by the

Institutional Review Board of the Massachusetts Institute of Technology (MIT IRB

Protocol #1508154608). Data of an additional 10 subjects collected as part of a prior

study (Experiment 2; [Huber et al., 2019]), referred to here as the original condition,

were used for comparison in the statistical analyses of Experiment 1 in the present

study.

4.2.2 Experimental Protocol

In each trial, subjects were instructed to observe a stick-figure display of a two-link

planar arm move along a closed path for 20s and then estimate its stiffness on a

numeric scale from 1 (“least stiff”) to 7 (“most stiff”) (Fig. 4-1). During this time,

participants were not restricted from moving their body during the experiment, and

they often mimicked the movement using their arm. Note that the endpoint path was

not explicitly displayed. After submitting their estimate, subjects self-initiated the

next trial. S1 Video demonstrates the display that subjects interacted with during

these experiments.
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Figure 4-1: Set up for Experiments 1 and 2. In each trial, subjects were instructed
to observe a stick-figure display of a two-link planar arm move along a closed path
for 20s and then estimate its stiffness on a numeric scale from 1 (“least stiff”) to 7
(“most stiff”).

Each subject performed 30 trials. Subjects were shown six unique arm motions,

each of which was simulated with a different value of elbow stiffness, repeated five

times in a blocked manner. The order was randomized within each block. After

completing the experiment, subjects were asked to provide a written description

of their strategy for estimating “arm stiffness”. The whole experiment lasted

approximately 20 minutes.

A custom MATLAB program (The Mathworks, Natick, MA) was used to simulate

and display the arm motions and to record subjects’ stiffness estimates. Participants

sat approximately 20” in front of a laptop screen (12” w × 7” h) on which the arm

motions were displayed. On the screen, the length of each arm link was ∼1”.

4.2.3 Simulated Arm Motions

The arm was modelled as a two-link planar manipulator moving in a vertical plane

and was driven with a controller comprising two attractors, inspired by the proposal
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that human motor behavior is composed of dynamic primitives [Hogan, 2017,Hogan

and Sternad, 2012]. The first attractor was a combination of an oscillatory primitive

with mechanical impedance in endpoint coordinates, acting to pull the endpoint

along a circular path, and the second was a combination of a fixed-point primitive

with mechanical impedance in joint coordinates, acting to pull it to a nominal joint

configuration.

The dynamics of this model were described as:

𝑀(𝑞)𝑞 + 𝐶(𝑞, 𝑞)𝑞 + 𝑔(𝑞) = 𝜏 (4.1)

where 𝑞,𝑞,𝑞 ∈ R2×1 are the joint angular positions, velocities, and accelerations,

respectively, 𝑀(𝑞) ∈ R2×2 is the inertia matrix, 𝐶(𝑞, 𝑞) ∈ R2×2 are the Coriolis and

centrifugal terms, 𝑔(𝑞) ∈ R2×1 are the gravitational terms, and 𝜏 ∈ R2×1 are the

controller joint torques. The length, mass, center of mass, and moment of inertia

parameters for the two links were chosen to match the forearm and upper arm of an

average, male human as described in [Zatsiorsky, 2002]. The controller joint torques

𝜏 were determined by

𝜏 = 𝐽(𝑞)𝑇𝐾𝑥(𝑥𝑟 − 𝑥)− 𝐽(𝑞)𝑇𝐵𝑥�̇�+𝐾𝑞(𝑞𝑟 − 𝑞) (4.2)

𝑥𝑟 =

⎛⎝0.1 cos
(︀
20𝜋𝑡
3

)︀
0.1 sin

(︀
20𝜋𝑡
3

)︀
⎞⎠ , 𝑞𝑟 =

⎛⎝𝜋
4

𝜋
4

⎞⎠ (4.3)

𝐾𝑥 =

⎛⎝500 0

0 500

⎞⎠ , 𝐵𝑥 =

⎛⎝10 0

0 10

⎞⎠ , 𝐾𝑞 =

⎛⎝0 0

0 𝐸

⎞⎠ (4.4)

where 𝑥,�̇� ∈ R2×1 were the endpoint (i.e., hand) positions and velocities,

respectively, 𝐽(𝑞) ∈ R2×2 was the Jacobian matrix, 𝑥𝑟 was the reference endpoint

position, which followed a circular path, 𝑞𝑟 was the reference joint configuration

which was constant, 𝐾𝑥 and 𝐵𝑥 were the endpoint stiffness and damping matrices,

respectively, 𝐾𝑞 was the joint stiffness matrix, and 𝐸 ∈ R≥0 was the value in the
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joint stiffness matrix corresponding to the elbow joint. The six unique arm motions

were generated by setting 𝐸 = {0, 10, 20, 30, 40, 50} 𝑁𝑚/𝑟𝑎𝑑 (Fig. 4-2). The range of

elbow stiffness values used was akin to those reported in human studies [Bennett et al.,

1992, Lacquaniti et al., 1982,Mussa-Ivaldi et al., 1985]. The dynamic simulation of

the arm used in this study was identical to that used in Experiment 2 of our previous

study [Huber et al., 2019].
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Figure 4-2: The six endpoint motions of the simulated arm in Experiment
1. Elbow stiffness (E) was varied. During the experiments, subjects only saw the
moving limb and were not shown the endpoint traces displayed here. The distance
between the centroids of the orbital endpoint paths, starting from 𝐸 = 0 𝑁𝑚/𝑟𝑎𝑑 to
𝐸 = 10 𝑁𝑚/𝑟𝑎𝑑, were 0.24”, 0.15”, 0.09”, 0.05”, 0.03”, respectively, when measured
on screen.

While all subjects in Experiment 1 observed the arm move so that it followed

the same six endpoint paths (Fig. 4-2), the velocity profiles along those paths varied

across four experimental conditions (Fig. 4-3, S1 Video and S2 Video). Subjects
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in the original condition saw the joints move with a velocity profile governed by the

aforementioned dynamic simulation. In the constant condition, the tangential velocity

of the endpoint, 𝑣, was set to a constant value of 0.185 m/s for all six motions (Fig.

4-4). In the inverse condition, tangential velocity varied as a power of the endpoint

path’s radius of curvature R(t):

𝑣(𝑡) = 𝐾𝑅(𝑡)−1/3 (4.5)

where 𝐾 was the velocity gain tuned to match the period of arm motions shown in

the constant condition (Fig. 4-4). In the inverse condition, the speed of the endpoint

increased with the curvature of its path. Note that this is the inverse of the typical

power law relation between speed and curvature observed in human motor behavior

(for review see [Zago et al., 2018]). The velocity manipulations implemented in the

constant and inverse conditions were chosen for this study because they have been

previously proven to affect both motion perception and production [Dayan et al.,

2007,Maurice et al., 2018]. In the variable condition, the relation between tangential

velocity and radius of curvature changed in each condition. The differential equation

of the model dynamics was solved using the ODE45 function in MATLAB to obtain a

time vector at 1ms resolution. A new time vector was generated to maintain constant

tangential velocity for the endpoint path produced from 𝐸 = 50 𝑁𝑚/𝑟𝑎𝑑 (𝑔𝑟𝑜𝑢𝑝1).

This newly generated time vector was used to generate the arm motion with six

different endpoint paths. The position vectors differed for each endpoint path, but

the time vector stayed the same. As a result, the relation between speed and curvature

differed across endpoint paths and did not follow a power law (Fig. 4-4). A video of

the different arm simulations subjects observed can be found in S2 Video.
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Figure 4-3: (A) Simulated arm motions in Experiment 1. The simulated
endpoint velocity profiles for each endpoint path across all conditions in Experiment
1 are shown. In the original condition, the velocity profiles followed from the dynamic
simulation. In the constant condition, the velocity profiles were manipulated to be
constant. In the inverse condition, the velocity profiles were manipulated to follow
the inverse of the veridical power-law relation. In the variable condition, the relation
between tangential velocity and radius of curvature changed with each simulated
stiffness; the velocity profiles did not have a simple velocity-curvature power-law
relation (see Fig. 4-4). (B) Simulated arm motions in Experiment 2. In
Experiment 2, the endpoint path (and simulated stiffness) remained the same across
the four different arm motions shown to participants, while the temporal pattern
along the path differed. The endpoint path was generated with 𝐸 = 30 𝑁𝑚/𝑟𝑎𝑑; the
velocity profiles along the path were chosen from the four conditions in Experiment
1 and are referred to as original, constant, inverse, and variable, accordingly.
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Figure 4-4: The relation between radius of curvature (ROC) and tangential
velocity (Tan Vel) for each endpoint path in the constant, inverse, and
variable conditions of Experiment 1. In the constant condition, this relation
was constant for all endpoint paths. In the inverse condition, tangential velocity
increased with radius of curvature for all endpoint paths. In the constant and inverse
conditions, the relation was the same for all endpoints path within each condition. In
the variable condition, this relation differed for each endpoint path. Specifically, the
time vector generated to maintain constant tangential velocity for the endpoint path
produced from the E = 50 Nm/rad simulation (constant condition) was applied to
all six different endpoint paths.

While the period of arm motion increased slightly across the six motions displayed

in the constant and inverse conditions (from 3.33 to 3.68 seconds), it was constant

in the original (3.33s) and variable (3.68s) conditions.

4.2.4 Task Instruction

We intentionally did not provide subjects with any details regarding the underlying

controller. Prior to the start of the experiment, subjects were not presented with

examples of “more” and “less” stiff arm motions. They also did not receive feedback
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regarding the accuracy of their estimates at any point during the experiment. If

a subject was unsure of what the term stiffness meant, they received the following

definition: “Stiffness is the extent to which an object resists deformation or deflection

in response to an applied force. A stiffer object has higher resistance to deflections

than a less stiff object.” In experiment 1, only 8 out of 30 subjects requested and were

provided with a definition of stiffness.

4.2.5 Self-Reported Strategy for Stiffness Estimation

After subjects had viewed all the simulations, they were asked to write down their

strategy for estimating stiffness. Subjects were not told that they would have to

self-report their strategy before the experiment to prevent potential interference

of conscious strategies. Each subject’s response was manually codified with four

binary motion features of interest (joint motion, endpoint motion, path information,

and temporal information) to quantitatively assess what type of motion information

subjects used to estimate stiffness. The criteria used to set the value of each binary

feature as either ‘yes’ or ‘no’ are presented in Table 4.1.

4.2.6 Statistical Analyses

To assess whether the estimates were similar across the four experimental conditions,

we conducted a 4 (condition) × 6 (joint stiffness) × 5 (block) analysis of variance

(ANOVA) of the arm stiffness estimate. ‘Condition’ was a between-subjects factor,

and ‘joint stiffness’ and ‘block’ were within-subject factors. The Greenhouse-Geisser

correction was applied to the within-subject factors.

In addition, a linear model of stiffness estimate as a function of joint stiffness was

fit to the data for each subject. The coefficient of determination (𝑅2) was calculated

for each subject. The 𝑅2 value represents the fraction of the overall variance of the

dependent variable (i.e., stiffness estimate) that can be accounted for by variability of

the independent measure (i.e., simulated joint stiffness). It served as a performance

measure of each subject’s ability to estimate changes in stiffness. 𝑅2 values closer to
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Feature Value Criteria

Path
Information

‘yes’

Use of the following words or phrases:
-“distance”
-“displacement”
-“range of motion”
-“angle”

‘no’ Did not meet criteria for a ‘yes’

Temporal
Information

‘yes’

Use of the following words or phrases:
-“speed”
-“rate”
-“acceleration”
-“jerk”
-“smooth”

‘no’ Did not meet criteria for a ‘yes’

Joint
Motion

‘yes’

Use of the following words or phrases:
-“joint”
-“shoulder”
-“elbow”
-“angle”
Hand-drawn picture of the arm with a pointer
to at least one of the joints

‘no’ Did not meet criteria for a ‘yes’

Endpoint
Motion

‘yes’

Use of the following words or phrases:
-“endpoint”
-“hand”
Hand-drawn picture of the arm with a pointer
to at least one of the joints

‘no’ Did not meet criteria for a ‘yes’

Table 4.1: Criteria used to encode the type of information subjects reported
using to estimate stiffness in Experiments 1 and 2.

1 indicated better fit of a linear model, and hence, better performance. A one-way

ANOVA of the 𝑅2 values with ‘condition’ as a between-subjects factor was conducted.

This analysis tested whether the amount of unmodeled variability in subjects’ stiffness

estimates differed across experimental conditions. A one-way ANOVA of the fitted

slope values with ‘condition’ as a between-subjects factor was also conducted.

Binomial regression was conducted to assess the effect of experiment on the

likelihood that subjects reported using path information, temporal information,

joint motion, and endpoint motion to estimate stiffness. Linear regression was also

113



conducted to further investigate whether the reported use of the aforementioned

motion features could predict subjects’ abilities as quantified by the 𝑅2 values of

the stiffness estimate linear fits. Data from the original condition was not included

in regression analyses since, in that experiment, subjects did not self-report their

strategy in writing.

In all statistical tests, the significance level was set to p = 0.05. Statistical analyses

were performed using SPSS Statistics for Windows, Version 24.0 (IBM Corporation,

Armonk, NY).

4.3 Experiment 1: Results

4.3.1 Effects of Experimental Condition and Simulated Joint

Stiffness on Stiffness Estimate

A three-way ANOVA revealed a significant effect of simulated joint stiffness

[𝐹 (1.64, 59.184) = 85.22, 𝑝 < 0.001]. Across all experimental conditions, subjects

increased their stiffness estimate with the simulated joint stiffness used to generate

the arm motion paths (Fig. 4-5). However, the remaining effects and interactions were

not significant [condition: 𝐹 (3, 36) = 0.64, 𝑝 = 0.59; block: 𝐹 (2.67, 96.11) = 0.35,

𝑝 = 0.77; simulated joint stiffness × block: 𝐹 (11.40, 410.36) = 1.21, 𝑝 = 0.28;

simulated joint stiffness × condition: 𝐹 (4.93, 59.18) = 1.22, 𝑝 = 0.31; block ×

condition: 𝐹 (8.01, 96.11) = 0.22, 𝑝 = 0.99; simulated joint stiffness × condition

× block: 𝐹 (34.20, 410.36) = 0.95, 𝑝 = 0.55].

Fig. 4-6 shows each individual subject’s stiffness estimates for every motion path

simulated with a different joint stiffness value, along with the linear model fit to

each subject’s data and the corresponding 𝑅2 value. The better the linear model

fit, the better the subject’s ability to estimate changes in stiffness. Subjects across

all experiments varied in their ability to estimate stiffness from motion, as indicated

by the overall variation of 𝑅2 values (𝑀 = 0.55, 𝑆𝐷 = 0.25; Fig. 4-7A–4-7D). A

one-way ANOVA revealed that there was no significant effect of condition on the
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Figure 4-5: Experiment 1 stiffness estimate results. In all four experimental
conditions, there was a significant positive effect of joint stiffness on the arm stiffness
estimates. Solid lines show the average arm stiffness estimate across subjects within
each condition. The dashed line shows the average stiffness estimate across subjects
in all conditions. Error bars represent ± 2 standard errors of the mean.

values [𝐹 (3, 36) = 1.04, 𝑝 = 0.39] (Fig. 4-7E). A one-way ANOVA of the slopes of

the linear fits similarly revealed no significant effect of condition [𝐹 (3, 36) = 0.90,

𝑝 = 0.45] (Fig. 4-8A–4-8E). Across all experimental conditions, the average slope was

0.56 (𝑆𝐷 = 0.33). These results indicate that the speed profile of the arm motions

had no statistically detectible influence on subjects’ ability to estimate stiffness.
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Figure 4-6: Experiment 1 stiffness estimates for each individual subject.
All the individual subjects’ stiffness estimates across simulated joint stiffness in all
four conditions. Larger dots indicate greater response frequency. The black lines
represent a linear fit of each subject’s data. The coefficient of determination, 𝑅2, is
also reported.
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Figure 4-7: Histograms of the coefficient of determination, 𝑅2 in (a) the original
condition, (b) the constant condition, (c) the inverse condition, and (d) the variable
condition of Experiment 1. (e) Average coefficient of determination, 𝑅2, in each
experimental condition. Error bars show ± 2 standard errors of the mean. There was
no significant effect of experimental condition on the 𝑅2 values.

Figure 4-8: Histograms of the slopes from the fitted linear models in (a) the
original condition, (b) the constant condition, (c) the inverse condition, and (d) the
variable condition of Experiment 1. (e) Average slope in each experimental condition.
Error bars show ± 2 standard errors of the mean. There was no significant effect of
experimental condition on the slope values.
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4.3.2 Effect of Experimental Condition on Motion Features

Used to Estimate Stiffness

To further examine the motion features subjects used to estimate stiffness, analyses

of the self-reported strategies were conducted. As seen in Fig. 4-9A, more subjects

reported using path information (𝑁 = 18) compared to temporal information (𝑁 =

8) to estimate stiffness, and more subjects reported using joint motion (𝑁 = 16)

compared to endpoint motion (𝑁 = 2). Most subjects (𝑁 = 10) reported using both

path information and joint motion Fig. 4-9B). However, a similarly large number of

subjects (𝑁 = 8) did not report using any of the four features.

Results of binomial regression found that experiment did not significantly affect

the likelihood that subjects reported using any of the four motion features [path

information: 𝜒2(2) = 0.84, 𝑝 = 0.66; temporal information: 𝜒2(2) = 2.62, 𝑝 = 0.27;

joint motion: 𝜒2(2) = 1.08, 𝑝 = 0.58; endpoint motion: 𝜒2(2) = 1.69,𝑝 = 0.43] (Fig.

4-9B). Results of the linear regression also found that none of the four motion features

extracted from subjects were significant predictors of a subject’s ability to estimate

stiffness (i.e., 𝑅2 value) [𝐹 (4.29) = 1.90, 𝑝 = 0.94] (Fig. 4-9C).

4.4 Experiment 2: Methods

The results of Experiment 1 showed that manipulation of temporal patterns did

not preclude subjects’ ability to identify changes in simulated joint stiffness. It is

still possible, however, that temporal patterns influence the magnitude of humans’

stiffness estimates. Experiment 2 directly tested this possibility.

4.4.1 Subjects

Ten subjects took part in Experiment 2 (5 males and 5 females with a mean age of 25.6

± 1.7 years). As in Experiment 1, subjects had a variety of educational backgrounds,

and none had any prior experience with the experimental task. All subjects gave

informed written consent before the experiment. The experimental protocol was
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Figure 4-9: Self-reported strategies in Experiment 1.(a) Histogram of motion
features that subjects reported using to estimate stiffness. (b) Stacked histogram of
the sixteen possible motion feature combinations that subjects could have reported
using to estimate stiffness (p: path information, t: trajectory information, j: joint
motion, e: endpoint motion). A subject who reported using path information (p)
and joint motion (j), but not trajectory information (t) and endpoint motion (e),
for example, would be counted under the combination ‘p+j’. (c) 𝑅2 values for each
motion feature combination that subjects reported using to estimate stiffness. Each
circle represents an individual subject. Color differentiates subjects based on the
condition they participated in.

reviewed and approved by the Institutional Review Board of the Massachusetts

Institute of Technology.
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4.4.2 Experimental Protocol

The experimental protocol was identical to that of Experiment 1, except that subjects

in Experiment 2 were shown four different arm motions, repeated five times in a

blocked manner. Each subject performed 20 trials.

4.4.3 Simulated Arm Motions

The endpoint path (and simulated stiffness) remained the same across the four

different arm motions, while the temporal pattern along the path differed. As

shown in Fig. 4-3B, the endpoint path was generated with an elbow stiffness of

𝐸 = 30 𝑁𝑚/𝑟𝑎𝑑; the velocity profiles along the path were chosen from the four

conditions in Experiment 1 and are referred to as original, constant, inverse, and

variable, accordingly.

4.4.4 Task Instruction

Task instruction was the same as Experiment 1. In Experiment 2, three subjects

requested and were provided with a definition of stiffness.

4.4.5 Self-Reported Strategy for Stiffness Estimation

As in Experiment 1, after observing all simulations, subjects were asked to write down

their strategy for estimating stiffness. Again, subjects were not told that they would

have to self-report their strategy prior to the experiment. The same criteria as before

(Table 4.1) were used to codify subjects’ self-reported strategy.

4.4.6 Statistical Analyses

To assess the effect of velocity profile on stiffness estimate, we conducted a 4 (velocity

profile) × 5 (block) ANOVA on the arm stiffness estimate. ‘Velocity profile’ and

‘block’ were within-subject factors. The Greenhouse-Geisser correction was applied
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to the within-subject factors. Planned comparisons using paired t-tests were made to

probe the within-subject effect of ‘velocity profile’.

4.5 Experiment 2: Results

4.5.1 Effects of Velocity Profile on Stiffness Estimate with the

Same Endpoint Path

A two-way ANOVA revealed a significant effect of velocity profile on stiffness estimate

[𝐹 (1.37, 12.31) = 5, 𝑝 = 0.029 (Fig. 4-10). Paired tests revealed that stiffness

estimates were significantly lower for original velocity profile compared to the three

other velocity profiles (𝑝𝑠 < 0.03). There was no statistical difference in stiffness

estimate across the other three velocity profiles (𝑝𝑠 > 0.18). The remaining effects

and interactions were not significant [block: 𝐹 (2.50, 22.53) = 1.08, 𝑝 = 0.37; velocity

profile x block: 𝐹 (2.69, 24.20) = 0.56, 𝑝 = 0.63]. Fig. 4-11 shows each individual

subject’s stiffness estimates for each velocity profile.

4.5.2 Self-Reported Stiffness Estimating Strategies

As in Experiment 2, subjects were asked to write down their strategy for estimating

stiffness after having viewed all the simulations. Contrary to the results of Experiment

1, in Experiment 2 more subjects reported using temporal information (𝑁 = 8) as

opposed to path information (𝑁 = 6) to estimate stiffness (Fig. 4-12A). However,

this was to be expected given that path information did not change across motions in

Experiment 2. Moreover, subjects in Experiment 2 rarely reported using either joint

motion (𝑁 = 1) or endpoint motion (𝑁 = 1) (Fig. 4-12A). Rather, many subjects

(40%) reported using both path and temporal information (Fig. 4-12B).
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Figure 4-10: Experiment 2 stiffness estimate results. A significant effect of
velocity profile on stiffness estimate was observed. Stiffness estimates for the original
velocity profiles were statistically smaller than for the manipulated velocity profiles.
There was no statistical difference in stiffness estimate between the three manipulated
velocity profiles. Bars show the average arm stiffness estimate across subjects for each
velocity profile. Error bars represent ± 2 standard errors of the mean.
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Figure 4-11: Experiment 2 stiffness estimates for each individual subject.
All the individual subjects’ stiffness estimates across the four velocity profiles. Larger
dots indicate greater response frequency.

Figure 4-12: Self-reported strategies in Experiment 2. (a) Histogram of motion
features that subjects reported using to estimate stiffness. (b) Histogram of the
sixteen possible motion feature combinations that subjects could have reported using
to estimate stiffness (p: path information, t: trajectory information, j: joint motion,
e: endpoint motion).
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4.6 Discussion

Given the observed relation between motor action and perception and the dependence

of both on velocity, we hypothesized that manipulating the velocity profile would

hinder subjects’ ability to estimate stiffness. To test this hypothesis, we simulated

arm motion with three new conditions. In each condition, we distorted the velocity

profiles of a simulated arm by manipulating the velocity-curvature relation of its

endpoint while keeping the paths the same. In all conditions, we found that

despite the manipulation of temporal information subjects still increased their arm

stiffness estimate with simulated elbow stiffness. Moreover, we did not observe a

statistically significant difference in subjects’ ability to estimate limb stiffness across

the experimental conditions, including the original condition with veridical velocity

profiles. These results emphasize the robustness of our prior finding that humans

can estimate changes in limb stiffness from visually observing its motion [Huber

et al., 2019, Huber et al., 2017]. While the results of Experiment 1 demonstrated

that manipulation of temporal patterns did not preclude subjects’ ability to identify

changes in simulated joint stiffness, Experiment 2 directly tested the possibility that

temporal patterns influence the magnitude of humans’ stiffness estimates. Specifically,

subjects observed 20 arm simulations that followed the same path (i.e., simulated

stiffness), but had 4 different velocity profiles. Analysis demonstrated that subjects

estimated simulations with the original velocity profile to be significantly less stiff

than simulations with a manipulated velocity profile. Given these results, we conclude

that temporal information does influence visual perception of stiffness. However, path

information is the predominant factor used by humans to visually estimate changes

in limb stiffness. These results provide further insight into how humans interpret and

learn from the motor actions of others.

Considerable research has shown that temporal information plays a key role in

both the generation and perception of biological motion. And yet, our results show

that changing the temporal patterns of the arm motion did not render subjects

unable to estimate limb stiffness. However, it is possible that the Likert scale used
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to quantify subjects’ stiffness estimates was not sensitive enough to capture small

differences across experiments. Discrete numeric scales are vulnerable to quantization

error, and the variance of quantization error is inversely proportional to the number

of estimate options (i.e., the lower the number of estimate options, the higher the

noise) [Bennett, 1948]. Additionally, the Likert scale is susceptible to response bias,

which occurs whenever a person responds systematically on some basis other than

what the items were specifically designed to measure [Bertram, 2007]. For instance,

it is possible that subjects could have different interpretations of the term “stiffness,”

leading to increased variability in the strategies used for producing stiffness estimates.

If subjects asked what the term “stiffness” meant, they were given the following

definition: “Stiffness is the extent to which an object resists deformation or deflection

in response to an applied force. A stiffer object has higher resistance to deflections

than a less stiff object.” As mentioned earlier, only eleven subjects asked for and were

given this definition; However, omitting those subjects from the statistical analysis

did not change the significance (or lack of significance) of the results. It is important

to emphasize that if our definition of stiffness had been given to all participants, an

assessment of whether the instruction potentially biased participants’ performance

could not have been made. This motivated our decision to only provide an instruction

if explicitly asked. Another common form of response bias is central tendency bias,

which occurs when subjects avoid selecting the most extreme results. As seen in

Fig. 4-6, not all subjects used the full range of the Likert scale, indicating that they

were affected by such bias. Some subjects even explicitly reported looking for the

most and least stiff simulations; however, those simulations never came. Since central

tendency bias effectively reduces the number of estimate options, it further increases

measurement noise for a given subject. Nonetheless, we used the Likert scale to

quantify subjects’ stiffness estimates to allow comparison of our experimental results

with those of our prior studies [Huber et al., 2019,Huber et al., 2017]. Furthermore,

despite the presence of measurement noise, the results show that the Likert scale

measurements were still fine enough to capture the effect of simulated joint stiffness

on stiffness estimate in Experiment 1. Moreover, it allowed us to determine the effect
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of velocity profile on the magnitude of subjects’ stiffness estimates in Experiment

2. We conclude that, if the experimental procedure did affect subjects’ stiffness

estimating ability, the effect was minimal.

In Experiment 2, where subjects observed simulations of the same endpoint path

produced from the same simulated joint stiffness, subjects estimated the stiffness

of the veridical velocity profile to be less than that of the other three non-veridical

velocity profiles. If subjects solely used path information to estimate stiffness, we

would expect subjects to have chosen the exact same stiffness estimate. While

one subject did exhibit this behavior (Fig. 4-11), that was not the trend for all

subjects (Fig. 4-10). Upon comparing Figs 10 and 13, it is seen that subjects’

stiffness estimates may be related to the acceleration or jerk of the simulated motion.

Thus, participants possibly used one of these temporal metrics to estimate changes in

stiffness, as the path-based metrics typically used were not available. Consistent

with these results, it has been shown that minimizing mean-squared jerk yields

the widely-observed 1/3 power law relation between speed and curvature [Huh and

Sejnowski, 2015,Viviani and Flash, 1995,Schaal and Sternad, 2001,Flash and Hogan,

1985], and moreover motions that follow the 1/3 (veridical) power law are perceived

to be more natural [Bidet-Ildei et al., 2006] and uniform [Viviani and Stucchi, 1992].

Here, subjects perceived these more ‘natural’ and ‘uniform’ movements to be less

stiff. Throughout the literature (for review see [Zago et al., 2018]), it has often

been shown that velocity encodes information about biological vs non-biological

motion. Given that minimizing jerk leads to a velocity profile commonly observed in

biological motion, subjects may have adopted this heuristic when estimating stiffness

(Fig. 4-13). As a result, subjects rated biological velocity profiles to be less stiff

than non-biological velocity profiles (Fig. 4-10). While participants had an overall

cognitive bias to estimate smoother (i.e., less jerky), veridical motions as less stiff, this

bias was likely not learned within the time course of the experiment. There was no

statistically significant effect of trial nor a statistically significant interaction between

trial and velocity profile on the stiffness ratings in Experiment 2. Ultimately, while

this temporal information may have an effect on subjects’ ability to estimate stiffness,
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Figure 4-13: RMS of temporal motion features in Experiment 2. All 4 velocity
profiles’ RMS of velocity (𝑟𝑎𝑑/𝑠), acceleration (𝑟𝑎𝑑/𝑠2), and jerk (𝑟𝑎𝑑/𝑠3) for 1 cycle
of motion in (a) joint coordinates, and (b) endpoint coordinates.

it is still subordinate to path information.

Given that stiffness is the relationship between force and motion and no

information related to force was provided, participants must have used some set of

path-based heuristics to estimate changes in stiffness. It is important to emphasize,

however, that we cannot claim what path-based heuristic(s) participants used as

there are a number of possibilities (e.g., endpoint path oblongness, endpoint path

area, endpoint path mean curvature, joint motion relative phase, shoulder range

of motion, or elbow range of motion) (Fig. 4-14). Inherently, our findings are

consistent with the idea of attribute substitution [Morewedge and Kahneman, 2010].

Attribute substitution occurs when people unconsciously make a judgement about

a target attribute based on simpler and/or more accessible substitute attributes

[Morewedge and Kahneman, 2010]. The process of attribute substitution reflects

the assumptions or cognitive biases that an individual holds about the relation
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between the target and substitute attribute(s). In our study, participants used some

motion attribute(s) (substitute attributes) to estimate changes in stiffness (target

attribute). Here, Experiment 1 (Fig. 4-5) demonstrates that overall participants held

a “correct” bias or assumption about how changes in motion related to changes in

joint stiffness; moreover, this bias was relatively consistent across individuals (Fig.

4-6). Importantly, this assumption of the relation between motion and stiffness

was unaffected by manipulations of temporal information. However, Experiment 2

shows that participants still held a bias or assumption about how temporal attributes

related to stiffness when differences in path were not present. Thus, we conclude

with the novel finding that path-related attributes predominate over time-related

attributes when humans estimate stiffness. Future work will investigate what specific

path-related attributes are used.

Subjects’ self-reported estimating strategies further support the finding that the

use of path information predominated over temporal information when subjects

visually estimated changes in limb stiffness. To estimate arm stiffness, in Experiment

1, more subjects reported using motion features that contained path information

than those that contained temporal information. Moreover, velocity profile did not

significantly influence whether subjects reported using path or temporal information

(Fig. 4-9A). It is possible that subjects only chose to ignore temporal information

because it was not veridical. On the other hand, in Experiment 2, subjects were forced

to use temporal information as the simulated endpoint paths were indistinguishable.

Thus, contrary to Experiment 1 where few subjects (∼23%) reported using temporal

information (Fig. 4-9A), in Experiment 2 many subjects (80%) reported using

temporal information (Fig. 4-12A). Interestingly, of the 30 subjects in Experiment

1, only 1 (∼3%) reported using the words “jerk” or “smooth”; however, 4 of the 10

subjects (40%) in Experiment 2, reported using the words “jerk” or “smooth”. These

results, together with Fig. 4-10 and 4-13, suggest it is likely that subjects did use

temporal information to estimate stiffness when differences in path information were

removed. Even so, the fact that velocity profile manipulations did not hinder subjects’

ability to estimate stiffness in Experiment 1 indicates that the influence of temporal
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Figure 4-14: Change in motion related features with simulated elbow
stiffness (adapted from [Huber et al., 2019]) (A) Endpoint path oblongness was
defined as the ratio of the eigenvalues of the covariance matrix of the endpoint path
in Cartesian coordinates. (B) Endpoint path area was defined as the area enclosed
by the end-point path in Cartesian coordinates. (C) Endpoint path mean curvature
was defined as the average inverse of the radius of curvature (see Methods). (D)
Joint motion relative phase was defined as the relative phase between the elbow and
shoulder motion and was calculated using cross-correlation analysis. (E) Shoulder
range of motion (ROM). (F) Elbow range of motion (ROM).

information is at least subordinate to path information.

Many subjects reported strategies that did not clearly include any of the four

motion features (Fig. 4-9B). Examples of such strategies reported interest in

“flexibility of the object,” “rigidity of the motion,” and “how constrained the object’s

motion appeared”. To avoid codifying subjects’ open-ended, written responses, we

could have asked subjects to choose from a pre-determined list of motion features.

While this may have simplified the coding of their estimating strategies, it would have
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also increased the chances of response bias (e.g., choosing features from the list for

the sake of it). Moreover, Table 4.1 is not an exhaustive list of the motion heuristics

subjects could have used. Fig. 4-14 highlights other path-based motion heuristics

that were related to the joint stiffnesses of the observed simulations. This study did

not aim to determine which path-based heuristics subjects used to estimate stiffness.

Rather, we examined subjects’ use of path and temporal information; the features

chosen in Table 4.1 helped us to do so. Furthermore, it is also important to be mindful

that no matter how subjects reported their estimating strategy, subjects could have

reported features that they did not actually use (or omitted reporting features they

did use). An inability to clearly articulate what strategy they used could also signal

that estimating stiffness using solely observation of motion is an implicit process

rather than a conscious one. This could explain why the combination of reported

motion features did not affect the stiffness estimating performance (Fig. 4-9C).

Nonetheless, the fact that subjects could successfully estimate changes in limb

stiffness is remarkable, and even more so is the fact that this ability is robust to

manipulations of temporal information (Experiment 1). The same limb motion can

be generated with an infinite number of stiffness values, making it fundamentally

impossible to unambiguously estimate stiffness from motion alone. This begs the

question, how are humans able to estimate limb stiffness from just the visual

observation of motion? The results from individual subjects indicated that they did

not achieve task success by simply guessing how changes in motion related to changes

in stiffness. If they did, we would expect the relation between their stiffness estimates

and the simulated joint stiffness values to be significantly negative for some subjects.

However, this was not the case. While 3 out of 40 subjects, in Experiment 1, did have

a negative slope in the linear model fit to their estimating data, the corresponding

𝑅2 values were very low (< 0.12) (Fig. 4-6). Excluding these subjects from the

statistical analyses did not change the significance or non-significance of any results.

Moreover, calculation of the Pearson’s correlation coefficient for each of these three

subjects confirmed that there was no significant, linear correlation between stiffness

estimates and simulated joint stiffness (𝑝 > 0.05). If these subjects did guess, it
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was a fruitless strategy. Instead, subjects must have drawn on prior knowledge to

successfully perform the experimental task. Furthermore, that prior knowledge had

a similar relation between limb stiffness and motion as the one resulting from the

control policy used to drive the simulated limb.

Extensive evidence from behavioral and neuroimaging studies shows a strong

coupling between action generation and perception processes in the human nervous

system [Hecht et al., 2001,Casile and Giese, 2006,Calvo-Merino et al., 2006,Avenanti

et al., 2013]. Thus, one possible explanation is that subjects may have used

implicit knowledge of their own neuromotor control system to successfully estimate

the changing stiffness of the simulated arm. In fact, a study of adaptation to a

force field during reaching by a proprioceptively deafferented patient found that an

internal representation of limb dynamics could be updated by visual information

alone [Sarlegna et al., 2010]. As mentioned previously, the controller used to drive

the simulated arm intentionally emulated aspects of human neuromotor control,

based on the proposal that motor actions are built from dynamic primitives using

the compositionality of mechanical impedance [Hogan, 2017, Hogan and Sternad,

2012]. As described in this theoretical framework, composing motor actions from

motion primitives alone is insufficient. Inclusion of mechanical impedance, minimally

defined as stiffness, is also required to control interaction or even the prospect

of interaction. Studies of kinematically constrained movements corroborate this

notion [Won and Hogan, 1995, Hermus et al., 2020b]. For instance, an oscillatory

motion primitive combined with a mechanical impedance is a competent model of

human interaction control during crank-turning (i.e., moving with a circular kinematic

constraint) [Hermus et al., 2020b] and during human-robot physical interaction [West

et al., 2022a]. This model offers a plausible explanation of how humans manage

physical interaction with their high degree of skeletal redundancy [Hogan, 2017,Hogan

and Sternad, 2012]. Outside the domain of human motor control, this computational

model has proven to be an effective control strategy for kinematically redundant

robots [Hermus et al., 2021]. The fact that subjects could estimate stiffness from

observing motion alone further supports the role of impedance in the generation

131



of motor actions. Moreover, the fact that subjects could do this without explicit

knowledge of the underlying controller suggests that the internal representation used

by humans to interpret the motion of others is consistent with the form of the

computational model proposed to describe the generation of motion. However, further

research is needed to determine the degree of congruency between subjects’ motion

generation and perception needed to perform this experimental task. Nevertheless,

the importance of the agreement between the simulated controller and subjects’ motor

perception should not be undervalued.

Whatever internal model or process was used to perform the task, regardless of its

exact form, it must have incorporated stiffness. The novel contribution of the study

presented here is that the representation of stiffness in this model is based primarily

on path information. At first blush, this appears to contradict the extensive evidence

indicating the important role of temporal patterns in biological motion perception.

One feasible explanation for this apparent discrepancy is that here, subjects were

asked to judge a mechanical property of a simulated arm, not anticipate or predict

its kinematic behavior. Smoothness is a measure of predictability, and prior work

has shown that maximizing smoothness (i.e., minimizing mean-squared jerk) yields a

widely-observed power law relation between speed and curvature [Huh and Sejnowski,

2015, Viviani and Flash, 1995, Schaal and Sternad, 2001, Flash and Hogan, 1985].

Hence, manipulating the temporal pattern of an object’s motion to eliminate the

power law relation between speed and curvature decreases its predictability. While

this would likely affect a human’s ability to track or anticipate the object, explaining

the results of studies such as Kandel et al. [Kandel et al., 2000b] and Maurice et al.

[Maurice et al., 2018], it would not necessarily impair their judgement of mechanical

properties, especially if such estimations are made based on the geometric features of

movement.

Another plausible reason why distorting temporal patterns did not inhibit

subjects’ ability to estimate joint stiffness was the presence of multiple moving bodies.

Here, subjects were presented with motion of a two-link arm, and more subjects

reported using joint motion (𝑁 = 16) rather than endpoint motion (𝑁 = 2). In
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prior studies where modulation of the speed-curvature power law relation reportedly

affected motion perception, subjects were only shown a single moving body, or part

of its trajectory, which is analogous to displaying only endpoint motion [Viviani

and Stucchi, 1992, Kandel et al., 2000b, Dayan et al., 2007]. It is possible that

spatial structure may be prioritized over temporal structure when multiple bodies

are moving. For instance, using the point light animation paradigm with a walking

figure, Hirai and Hiraki [Hirai and Hiraki, 2006] found that manipulation of spatial

structure (i.e., randomizing the start point of a particular point light, while keeping

its velocity vector the same) had a substantially greater effect on the brain’s response

in the occipitotemporal regions, than manipulation of the temporal structure (i.e.,

scrambling the frames in the point light animation).

Ultimately, the fact that our results suggest that path information (i.e., geometry)

is the predominant motion characteristic in humans’ internal representation of

stiffness is consistent with the foundation of mechanics. Only with the postulates

of geometry derived by Euclid could the likes of Newton, Lagrange, and Hamilton

describe the motion of objects and deduce their own postulates regarding the forces

that cause it (for review see [Dugas, 1988]). Geometry is fundamental to mechanics.

Therefore, it is reasonable that internal models used to interpret dynamics during

action perception are predominantly based on geometry.

4.7 Conclusions

To conclude, here we showed that humans can correctly infer changes in limb stiffness

from nontrivial changes in multi-joint limb motion. This result was robust despite

manipulations of the arm’s endpoint velocity profile. However, when path information

was indistinguishable, veridical velocity profiles were perceived as less stiff than

non-veridical velocity profiles. While other researchers have shown that manipulation

of the velocity profile may hinder humans’ ability to anticipate kinematics, we show

that it does not hinder humans’ ability to estimate stiffness. These observations

suggest that stiffness, or more generally mechanical impedance, of the limb is encoded

133



in an internal model used to perform this task. Moreover, these results provide new

insight into how humans interpret the motor actions of others and suggest that path,

not trajectory, information is more important to humans when estimating stiffness

from motion. This exploration of how humans extract latent features of neuromotor

control from kinematics provides new insight into how humans interpret the motor

actions and interactions of others.
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Chapter 5

A Synergy-based Complexity Index

to Promote the Study of Complex

Manipulation

In Chapter 2, we established that synergies may simplify motor control during

dexterous manipulation tasks. However, we highlighted that these synergies are

task-specific, suggesting that we may have access to more synergies than degrees

of freedom. Moreover, these synergies may aid in learning new behaviors, stored

in a library to be utilized during specific tasks [Tessari et al., 2024]. This raises a

daunting research question: How can we ensure that the tasks we study represent the

entire spectrum of complex manipulation activities humans can perform with their

hands? In Chapter 5, we aim to answer this question by proposing a new metric:

the Variance-Accounted-For based Complexity Index (VAF-CI). This innovative

metric can broaden the scope of future studies on hand manipulation, ensuring a

comprehensive exploration of the hands’ capabilities and related synergistic behavior.

This chapter is an adapted version of a paper that was submitted IEEE RAS

EMBS 10th International Conference on Biomedical Robotics and Biomechatronics

(BioRob 2024), “The Study of Dexterous Hand Manipulation: A Synergy-Based

Complexity Index.” This work was done in collaboration with Federico Tessari and

Neville Hogan.
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5.1 Introduction

The study of robotic grippers, hands and exoskeletons is of great academic and

industrial interest due to the need for an intuitive, multi-functional and seamless

physical-interaction between machines and their external environment [Billard and

Kragic, 2019]. Multiple studies, spanning more than a century, tried to tackle

the design of dexterous end-effectors inspired by the superb manipulation abilities

of the human hand [Schlesinger, 1919, Jacobsen et al., 1986, Bicchi and Kumar,

2000, Catalano et al., 2014, Piazza et al., 2019, Laffranchi et al., 2020]. However,

manipulation proves to be a challenging problem not only from a design perspective,

but also from a control standpoint [Billard and Kragic, 2019,Mason, 2018].

The “classical” robotic control techniques—based on rigid body

dynamics—provide a sound starting point but struggle when faced with the

strong non-linearities of contact-rich dynamics [Murray et al., 1994]. Two main

approaches have emerged. On one hand, several studies tried to solve dexterous

manipulation by exploiting learning-based methods [Li et al., 2018, Nagabandi

et al., 2020,Kumar et al., 2016,Kroemer et al., 2021,Andrychowicz et al., 2020]. A

complementary approach studies how humans exploit their end-effectors—i.e. their

hands—to perform object manipulation. The extraordinary manipulation abilities

of humans can provide both inspiration for and intuition about how to achieve

dexterous robotic manipulation.

One aspect that has facilitated the study of human manipulation is the

investigation of hand synergies [Santello et al., 1998, Mason et al., 2001, Todorov

and Ghahramani, 2004]. A synergy can be defined as a coordinated action of an

ensemble of features. Such features can be described at different levels such as

muscular [D’avella and Tresch, 2001, Ting and McKay, 2007, Weiss and Flanders,

2004] (typically measured through EMGs) or kinematic [Santello et al., 1998,Mason

et al., 2001,Todorov and Ghahramani, 2004,Weiss and Flanders, 2004,Santello et al.,

2002] (typically recorded through joint trajectories or limb motions). A leading theory

in human neuromotor control supports the hypothesis that humans exploit synergies
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to control their dimensionally complex neuromusculoskeletal system [Santello et al.,

2016]. In other words, synergies are a lower dimensional operating space that

simplifies the control of a larger set of controllable features.

Human hand synergies have been investigated to simplify robot mechanical design

and control [He and Ciocarlie, 2022, Ciocarlie and Allen, 2009]. Most studies

investigated the role of synergies in simple and common everyday tasks, such as

grasping and tool handling [Santello et al., 1998,Mason et al., 2001]. However, the

human hand is capable of a wide array of tasks of various degree of complexity (e.g.,

from grasping cylindrical objects such as a water bottle to a complex manipulation

task such as playing the piano).

With this in mind, one large question remains unanswered: “How can we ensure

that the tasks analyzed represent the whole spectrum of complex manipulation

activities that humans can perform with their hands?”. The answer to this question

may lead to a more accurate description of how humans exploit synergies to

control their hands during dexterous manipulation. Such comprehension could be

leveraged to improve both the design of exoskeletons, prostheses, and general robotic

end-effectors as well as the execution of existing synergy-based control strategies.

In this study, we present a new metric to quantify the complexity of hand

manipulation tasks. This metric can ensure that the study of hand manipulation

incorporates tasks that represent the breadth of the hands’ dexterity. To validate

this metric, we analyzed three different tasks involving various degrees of hand

dexterity: (1) a simple human manipulation task i.e., reaching to grasp a tool, (2) a

more advanced occupational task incorporating tool-use, and (3) a widely recognized

advanced manipulation exercise: piano playing.

For each of these tasks, the analysis focused on kinematic synergies of the hand

and, in particular, quantification of their complexity based on an index extracted

from the cumulative variance-accounted-for (VAF) by all synergies. Here, we

introduce the VAF-based complexity index (VAF-CI). The efficacy of this index is

statistically validated and its robustness is investigated through a sensitivity analysis.

Furthermore, a supervised machine learning method, based on k-means clustering, is
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developed as an unbiased verification of the experimental methodology. The results

of this study can be used to ensure that future studies of hand manipulation probe a

wider range of the hands’ capabilities, and related synergistic behavior.

5.2 Methods

5.2.1 Singular Value Decomposition

Given a data matrix 𝑋 ∈ R𝑛×𝑚, where 𝑛 denotes the number of observations (e.g.,

the time evolution of a degree of freedom) and 𝑚 denotes the number of features (e.g.,

the number of analyzed DoFs) for a given task, synergies can be extracted using the

Singular Value Decomposition (SVD) algorithm:

𝑋 = 𝑈 · 𝑆 · 𝑉 𝑇 (5.1)

where 𝑈 ∈ R𝑛×𝑛 is an orthonormal matrix whose columns denote the temporal

evolution of a given synergy, 𝑆 ∈ R𝑛×𝑚 is diagonal matrix of singular values which

give an estimate of the VAF in a given synergy, and 𝑉 ∈ R𝑚×𝑚 is an orthonormal

matrix whose columns represent a synergy. For a geometrical interpretation of this,

see [West et al., 2023].

The VAF enables us to understand how each extracted synergy represents the

variability in the original data set. The VAF of a given (i.e., the 𝑖𝑡ℎ) synergy can be

computed using:

𝑉 𝐴𝐹 (𝑖) =
𝜎2
𝑖∑︀
𝜎2
𝑖

𝑓𝑜𝑟 𝑖 = 1, ...,𝑚 (5.2)

where 𝜎𝑖 is the singular value on the 𝑖𝑡ℎ diagonal element of 𝑆. Throughout this

paper, the VAF is reported as a decimal ranging from 0 to 1. Intuitively, a synergy

with a larger VAF will account for a greater portion of the data variability.
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5.2.2 Variance-Accounted-For based Complexity Index

In this work we propose a VAF-based complexity index (VAF-CI). Given a certain

experimental task, the VAF-CI can be computed using the following equation based

on the trapezoidal integral rule:

𝑉 𝐴𝐹–𝐶𝐼 = 1− 1

𝑁𝐷𝑜𝐹

𝑁𝐷𝑜𝐹−1∑︁
𝑖=1

1

2

(︂
𝑐𝑉 𝐴𝐹 (𝑖) + 𝑐𝑉 𝐴𝐹 (𝑖+ 1)

)︂
(5.3)

where 𝑐𝑉 𝐴𝐹 (𝑖) =
∑︀𝑖 𝑉 𝐴𝐹 (𝑖) is the cumulative variance-accounted-for at the i-th

synergy and 𝑁𝐷𝑜𝐹 is the total number of degrees-of-freedom. Importantly, in the SVD,

the total number of synergies coincides with the total number of degrees-of-freedom.

Note that the VAF-CI has been formulated as a metric that can range from 0 to 1.

Mathematically, the VAF-CI is the normalized area above the cumulative VAF

curve (See Fig. 5-3). As this area increases, so does the VAF-CI; for this area to

increase, the cumulative VAF-curve must decrease. Conceptually, the VAF-based

complexity index increases when more synergies are needed to describe the variance

in the data. However, from a physical standpoint, this metric has an upper limit

of 0.5. If each degree-of-freedom acts independently, then the contribution of each

synergy will be weighted equally. In turn, the cumulative variance-accounted-for will

approach a straight line whose slope is 1
𝑁𝐷𝑜𝐹

. The normalized area above this curve

will approach a maximum at 0.5.

In this work, we tested the hypothesis that as a task increases in complexity, more

individual DoFs are needed to perform the task, and this could be uniquely quantified

by the VAF-CI. It is important to emphasize that, here, we define complexity by

the necessity of individuated motion. A task that enables joint coordination is

considered less complex, while a task that requires joint individuation is considered

more complex. In sum, the proposed VAF-based complexity index can be used as

an intuitive measure of task complexity without the need to choose the number of

important synergies, e.g. based on an arbitrary level of variance-accounted-for.
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5.2.3 Experimental Setup

To test the VAF-CI, we needed to obtain kinematic hand data for a wide range of tasks

with widely recognized different levels of complexity. Specifically we considered the

three following manipulation tasks: (1) reach-to-grasp, as the most basic manipulation

task – every able-bodied human is capable of it, (2) tool-use, as a more advanced

manipulation – most but not all able-bodied humans are capable of it, and (3) piano

playing, as one of the most advanced manipulation tasks – only a small percentage

of specifically-trained able-bodied humans are capable of it. We want to emphasize

that piano playing is a highly dynamic task that requires temporal coordination, joint

individuation, and the application of varying forces in a goal-oriented, time specific

manner.

Wire Harnessing

The initial two tasks involving manipulation (reach-to-grasp and tool-use) were

conducted within the framework of wire-harnessing. Figure 5-1 shows the mock-up

electrical cabinet used for the wire-harnessing experiment.
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Figure 5-1: Wire harnessing experimental setup: top image shows the use of a
screw-driver (Step 3), bottom image shows the threading of the wire harness (Step
4).

The study enlisted seven (three women and four men) right-handed participants,

ages ranging from 18 to 28 years, all of whom had no documented history of

neurological or musculoskeletal issues. All subjects received a comprehensive briefing

on the experimental procedures and signed a consent form approved by MIT’s

Institutional Review Board.

Each participant executed two distinct tasks. The first task, denoted as the

‘reach-to-grasp experiment’, entailed reaching out, grasping, and lifting various tools.

Specifically, participants were instructed to reach for and grip items such as scissors,

zip ties, a screwdriver, a wire harness with its branches secured, and a wire harness

with its branches unsecured, as if they intended to use them. Each subject repeated

this action four times for each object. The concatenation of each of these trials,

for a given subject, produced one data matrix, 𝑋. The second task was structured

to replicate wire-harness assembly in a manufacturing setting. Participants were
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tasked with utilizing the tools from the reach-to-grasp experiment to install a wire

harness onto a simulated electrical cabinet (Fig. 5-1). This task, termed the ‘tool-use

experiment’, was divided into five distinct steps. At each stage, participants received

verbal instructions and were provided with a booklet containing written directions

and a depiction of the completed step. One subject’s completion of a given step

produced one data matrix 𝑋. The steps were as follows: (1) Attach zip ties to the

branched ends of the wire harness at three specified locations, (2) employ the scissors

to trim excess tips of the zip ties, (3) utilize U-brackets, screws, and a screwdriver to

fasten the wire harness securely to the top of the mock electrical cabinet, (4) thread

the wire harness through hooks, (5) connect the wire harness into the socket.

Throughout the task performance, we recorded hand postures using a CyberGlove

(CyberGlove; Virtual Technologies, Palo Alto, CA), a glove equipped with embedded

sensors designed to capture joint kinematics. We recorded 20 joint angles.

Specifically, measurements included flexion of the distal interphalangeal (DIP),

proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints of the four

fingers. Additionally, abduction (ABD) of the four fingers at the MCP joints

was recorded. For the thumb, measurements included flexion at the MCP and

interphalangeal (IP) joints, abduction (ABD) at the carpometacarpal joint, and

rotation (ROT) around an axis intersecting the trapeziometacarpal joint. During

both experiments, participants wore a CyberGlove on each hand, although only data

from the right hand are presented in this report. In all instances, the CyberGlove

collected samples at approximately 200 Hz, with a nominal angular resolution of less

than 0.1 degrees.

In total, we obtained 10 (5 reach-to-grasp tasks + 5 manipulation tasks) sets of

data, 𝑋 ∈ R𝑛×20 (where 𝑚 = 20 joint DoFs), for each of the 7 subjects. For greater

experimental details, see Chapter 2.

The piano playing study enlisted five right-handed participants (three men and

two women) with no documented history of neurological or musculoskeletal disorders.

Their ages ranged from 19 to 36 years and they had an average piano experience of

20.0 ± 8.3 years. All subjects were right-handed, received a comprehensive briefing
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on the experimental procedures, and signed a consent form approved by MIT’s

Institutional Review Board.

Each participant was asked to play any piece they could perform from a series of 9

piano pieces from the classical repertoire, ranging from beginner to advanced level. No

subject could play the advanced pieces; thus, they are not reported here: (Beginner)

J. S. Bach, Prelude in C Major, BWV 846 ; F. Chopin, Prelude Op. 28 No. 5 ; E.

Satie, Gnossienne No. 1, (Intermediate) W. A. Mozart, Sonata No. 8 in A minor,

K310, I movement ; L. v. Beethoven, Sonata No. 23 in F minor “Appassionata”, Op.

57, III movement ; C. Debussy, 12 Etudes, No. 5, Pour Les Octaves.

Afterwards, subjects were invited to play any additional piano piece in their

personal repertoire. Each subject was instructed to perform the piece in a unique

session without interruptions. This was done to prioritize continuity of motion over

accuracy and precision of the piece execution. On average each subject played 6.5±1.9

pieces.

During the execution of every piece subjects hand movements were recorded using

two cameras (Sony RX0 II) mounted above the two extremities of the keyboard

(Roland FP-10) as shown in Figure 5-2. The cameras’ recordings were analogically

synchronized using two dedicated Sony Camera Control Boxes connected to an

Ethernet router. The Sony related acquisition software was used and data were saved

at a sampling frequency of 60𝐻𝑧.
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Piano Playing

Figure 5-2: Piano playing experimental setup.

The collected data were then post-processed using the MediaPipe Hands marker-less

motion tracking algorithm. MediaPipe Hands is a high prediction quality and

lightweight machine learning model. It consists of two modules: (i) a palm detector

that places an oriented hand bounding box and (ii) a hand landmark model that

operates on the cropped bounding box [Zhang et al., 2020]. This base model detects

21 key-points: one on the wrist and four additional points per finger. A custom

algorithm, developed in [Wang, 2023], was used to transform the extracted key-points

into 20 joint rotations – the same as those collected by the CyberGlove described

above.

The left camera (Fig. 5-2) was used to extract the right hand middle, ring and little

fingers’ motion while the right camera took care of the right hand thumb and index
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fingers. The camera configuration and finger selection were heuristically determined.

Only right hand data were analyzed for this report.

5.2.4 Validation of the Variance-Accounted-For based

Complexity Index

Given three sets of tasks with widely accepted different levels of manipulation

complexity, we tested the proposed VAF-CI. First the data were centered, in

accordance with [West et al., 2023]. Then, after SVD (Eq. 5.1), the cumulative VAF

(Eq. 5.2) and subsequent VAF-CI (Eq. 5.3) were computed. Finally, we compared

the VAF-CIs of the reach-to-grasp, tool-use, and piano playing trials using a 3 (task)

x 1 ANOVA.

Comparison to Significant Number of Synergies

To emphasize the robustness of the novel VAF-CI, we compared our metric to the

current standard for estimating the number of significant synergies. The literature

has used a plethora of methods to define the number of significant synergies [Santello

et al., 1998,Todorov and Ghahramani, 2004]. Typically, researchers will choose the

significant number of synergies using an arbitrarily chosen amount of cumulative VAF.

For instance, some have defined the number of significant synergies as the number

of synergies required to achieve at least 90% cumulative VAF and where inclusion of

another subsequent synergy did not add an additional 5% cumulative VAF [Todorov

and Ghahramani, 2004]. Here, we computed the number of significant synergies for

each task considering at least 90%, 80%, or 70% cumulative VAF and where inclusion

of another subsequent synergy did not add an additional 5% cumulative VAF. For

brevity, each of these three metrics will be referred to as 90 & 5, 80 & 5, and 70 & 5

respectively. For each of the 3 thresholds used to define the significant number of

synergies, we performed three one-way ANOVAs (one per each task) to determine if

there was an effect of manipulation task on the number of significant synergies.
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A Metric for Unsupervised Learning

As an additional test, we submitted the computed VAF-CIs to an unsupervised

learning algorithm, namely k-means clustering [Lloyd, 1982], to test whether this

metric can be used to classify various manipulation tasks. The k-means clustering

algorithm was implemented with the kmeans function in MATLAB. Moreover, it

was initialized with 𝑘 centroids whose values were randomly sampled from the input

VAF-CI values. To ensure that a local minimum was reached, the algorithm was

updated with online updates – each sample was individually reassigned to a new

cluster if it reduced the sum of point-to-centroid distances. Finally, in order to find a

global minimum this algorithm was repeated 5 times with different randomly-sampled

initializations. The repetition with the lowest sum of point-to-centroid distances is

reported.

To identify the number of clusters, we used the elbow method – identifying where

adding an additional number of clusters no longer significantly decreases the sum

of point-to-centroid-distances. For the case of 3 chosen clusters, we also report the

confusion matrix comparing the true and predicted tasks. Moreover, we report the

algorithm’s accuracy – defined as the number of true positives (correct classifications)

for each group divided by the total number of sample tasks.

Robustness to Data Pre-processing

One might argue that the time needed to complete the various measured tasks

could significantly impact the variance in the data, thereby introducing bias to the

variance-accounted-for based complexity index. To address this concern, we applied

two pre-processing techniques before Singular Value Decomposition. Specifically, we

downsampled the data using either a specific frequency (60Hz) or a set number of

bins (800). These values were chosen to be close to those of the trial with the lowest

sampling frequency or number of bins.

As done above, we conducted SVD (Eq. 5.1) on the down-sampled data and

calculated the cumulative VAF (Eq. 5.2) and subsequent VAF-CI (Eq. 5.3). Finally,
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we compared the VAF-CIs of the reach-to-grasp, tool-use, and piano playing trials

using a 3 (task) x 1 ANOVA. Also, we report the accuracy of the unsupervised learning

algorithm on these data sets when 3 clusters were identified.

5.3 Results

5.3.1 Validation of the Variance-Accounted-For based

Complexity Index

With kinematic hand data from the three sets of tasks (reach-to-grasp, tool-use, and

piano playing), we used Eqs. 5.1 and 5.2 to compute the variance-accounted-for by

each synergy. The average and standard deviation across trials are shown in Fig. 5-3.

Additionally, the cumulative VAFs are shown averaged across trials for each set of

tasks. The cumulative VAF for a given synergy is generally lower in tool-use than in

reach-to-grasp, and lower in piano than in tool-use.

147



Figure 5-3: VAF of each synergy in the reach-to-grasp, tool-use, and piano
playing experiments averaged across subject. The cumulative sum of the VAF is
denoted by the lines. Errorbars are ±1SD. To save space, only the first 10 of 20
synergies are shown.

With the cumulative VAF, our proposed VAF-based complexity index was

computed using Eq. 5.3 for each trial. The averages and standard deviations across

tasks are reported in Fig. 5-4. A one-way ANOVA revealed a significant effect of task

on VAF-CI (𝐹2,101 = 125.75, 𝑝 = 3.86𝑒− 20). Post-hoc t-tests (Bonferroni corrected

𝛼 = 0.05/3 = 0.0167) revealed that the tool-use VAF-CI was significantly greater than

that of reach-to-grasp (𝑝 = 0.0061) while the piano playing VAF-CI was significantly

greater than that of tool-use (𝑝 = 1.27𝑒− 20) and reach-to-grasp (𝑝 = 2.26𝑒− 27).
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Number of Significant Synergies
90 & 5 80 & 5 70 & 5

Reach-to-Grasp 3.03± 1.01 2.83± 0.92 2.83± 0.92
Tool-Use 3.94± 1.35 3.34± 0.94 3.34± 0.94
Piano 6.97± 0.87 4.74± 0.71 4.68± 0.68

Table 5.1: Number of Significant Synergies for the reach-to-grasp, tool-use, and
piano playing experiments to achieve at least 90%, 80%, or 70% cumulative VAF and
where inclusion of another subsequent synergy did not add an additional 5% VAF.
The averages and standard deviations are reported.

Figure 5-4: VAF-CI in the reach-to-grasp, tool-use, and piano playing
experiments averaged across subject. Errorbars are ±1SD. * represents 𝑝 ≤ 0.05,
** represents 𝑝 ≤ 0.01, and * * * represents 𝑝 ≤ 0.001
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5.3.2 Comparison to Significant Number of Synergies

Table 5.1 reports the number of significant synergies in the reach-to-grasp, tool-use,

and piano-playing experiments for the three aforementioned thresholds of cumulative

VAF.

Moreover, for each of the 3 metrics used to define the significant number of

synergies, we performed a one-way 3 (tasks) x 1 ANOVA to determine if there

was an effect of manipulation task on the number of significant synergies. The

one-way ANOVA on the 90 & 5 significant synergies returned a significant effect

of task (𝐹2,101 = 121.27, 𝑝 = 1.42𝑒 − 27). Post-hoc t-tests (Bonferroni corrected

𝛼 = 0.05/3 = 0.0167) revealed that the tool-use had significantly more synergies than

the reach-to-grasp (𝑝 = 0.0021) while, piano had significantly more synergies than

tool-use and reach-to-grasp (𝑝 = 1.48𝑒− 19 and 4.74𝑒− 27 respectively).

In comparison, the ANOVA on the 80 & 5 and 70 & 5 significant synergies

demonstrated a significant effect of task in both cases (𝐹2,101 = 44.76, 𝑝 = 1.20𝑒− 14

and 𝐹2,101 = 42.51, 𝑝 = 4.04𝑒−14 respectively). However, post-hoc t-tests (Bonferroni

corrected 𝛼 = 0.05/3 = 0.0167) revealed that while piano playing exhibited a

greater number of significant synergies than tool-use (𝑝 = 3.78𝑒− 09 and 1.13𝑒− 08,

respectively) and reach-to-grasp (𝑝 = 1.81𝑒−14 and 5.35𝑒−14, respectively) tool-use

did not exhibit more significant synergies than reach-to-grasp in both cases (𝑝 = 0.038

and 0.036, respectively for 80 & 5 and 70 & 5). This demonstrated that arbitrarily

choosing a threshold to define which synergies are significant can lead to different

results, both in the number of synergies as well as how much they discriminate

between manipulation tasks. This method of measuring complexity could lead to

arbitrarily biased results.

5.3.3 A Metric for Unsupervised Learning

To demonstrate that VAF-CI can be used to classify various manipulation tasks, we

submitted these values to an unsupervised learning algorithm, k-means clustering.

Fig. 5-5a shows the sum of point-to-centroid distances as a function of the number
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of clusters. Intuitively, as this value increases to the exact number of samples the

sum of point-to-centroid distances will tend to zero. Importantly, Fig. 5-5a shows

that after ∼3 clusters, adding an additional cluster did not greatly reduce the sum of

point-to-centroid distances; there is an “elbow” around 3 clusters. That is consistent

with the three different manipulation tasks investigated in this study.
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Figure 5-5: K-means clustering algorithm results (a) The sum of
point-to-centroid distances as a function of the number of clusters. At ∼3 clusters,
adding another cluster did not greatly reduce the sum of point-to-centroid distances.
(b) The identified clusters of the algorithm for 3 chosen clusters and the associated
(c) confusion matrix. X’s denoted the VAF-CI for each of the samples in the 3 tasks:
reach-to-grasp (‘R-T-G’), tool-use (‘T-U’), and piano playing (‘P’). Different colors
denote the various identified clusters while the dashed lines denote the boundaries
between the identified clusters.
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Fig. 5-5b shows the results of the k-means clustering algorithm for three identified

clusters. Fig. 5-5c shows the confusion matrix between the identified clusters and the

originally considered manipulation tasks. The algorithm correctly identified the task

using the VAF-CI with an accuracy of 71.2%. Notably, it classified the reach-to-grasp

task with an accuracy of 88.6% and the piano playing task with an accuracy of 82.4%.

The tool-use task, whose VAF-CI was generally less than that of the piano-playing

task and generally greater than that of the reach-to-grasp task, had a classification

accuracy of 42.9%; the tool-use tasks were often classified as a reach-to-grasp task

(54.3%).

Fig. 5-6a shows the VAF-CI of the individual tasks that comprise the

reach-to-grasp (R-T-G) and tool-use (T-U) experiments. Additionally, the boundaries

between clusters identified in Fig. 5-5b are displayed. It is seen that some of the

simpler reach-to-grasp tasks, such as plugging in (Step 5) and routing (Step 4) the

wire harness, have lower VAF-CIs. On the other hand, the tool use tasks involving

more dexterity - using a zip tie and a screwdriver - were classified in the middle

cluster.

Fig. 5-6b displays the VAF-CI of the individual piano pieces that were played

as part of the piano experiment. Three pieces of generally accepted levels of easy

(J.S. Bach, Prelude in C major, BWV 846 [Bach, 2011]), medium (W.A. Mozart,

Piano Sonata No. 8 in A minor, K. 310 ), and advanced (F. Chopin, Étude Op.

25, No. 11 [Chopin and Palmer, 1995]) difficulty are highlighted. VAF-CI correctly

orders these pieces based on complexity, demonstrating that even within a particular

manipulation task (i.e., piano playing), VAF-CI can capture the varying complexity.
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Figure 5-6: Average VAF-CI of individual tasks. (a) The VAF-CI for the distinct
tasks in the reach-to-grasp (R-T-G) experiment and tool-use (T-U) experiment are
shown in increasing order in black, while the piano piece VAF-CI is shown in red.
(b) The VAF-CI of individual pieces played in the ‘piano experiment’ are shown in
increasing order in red. Pieces of generally accepted levels of easy (J.S. Bach, Prelude
in C major, BWV 846 ), medium (W.A. Mozart, Piano Sonata No. 8 in A minor,
K. 310 ), and advanced (F. Chopin, Étude Op. 25, No. 11 ) difficulty are highlighted.
Error bars are ±1SD. Note, some piano pieces do not have error bars as they were
only played by one subject. Dashed lines denote the boundaries between the identified
clusters as in Fig. 5-5b.
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5.3.4 Robustness to Data Pre-processing

As mentioned in Section 5.2.4, we sought to assess the metric’s robustness to

data length and pre-processing. Two pre-processing techniques were employed:

downsampling to (1) 800 bins and (2) 60 Hz. In the 800 bins data the VAF-CI

was 0.076 ± 0.013, 0.089 ± 0.022, and 0.12 ± 0.011 for the reach-to-grasp, tool-use,

and piano playing data respectively. Similarly, in the 60 Hz data the VAF-CI was

0.076±0.013, 0.089±0.022, and 0.12±0.012 for the reach-to-grasp, tool-use, and piano

playing data respectively. Moreover, in both data sets a one-way ANOVA revealed

a significant effect of task on VAF-CI (800 bins: 𝐹2,101 = 69.22, 𝑝 = 1.17𝑒 − 19

and 60 Hz: 𝐹2,101 = 69.63, 𝑝 = 9.83𝑒 − 20). In both data sets, post-hoc t-tests

(Bonferroni corrected 𝛼 = 0.05/3 = 0.0167) revealed that the tool-use VAF-CI was

significantly greater than that of reach-to-grasp (800 bins: 𝑝 = 0.0030 and 60 Hz:

𝑝 = 0.0035) while the piano playing VAF-CI was significantly greater than that of

tool-use (800 bins: 𝑝 = 3.64𝑒 − 12 60 Hz: 𝑝 = 2.63𝑒 − 12) and reach-to-grasp (800

bins: 𝑝 = 1.40𝑒 − 19 60 Hz: 𝑝 = 1.25𝑒 − 19). Additionally the k-means clustering

algorithm, with three identified clusters, had an accuracy of 61.5% and 60.6% for the

800 bins data and 60 Hz data, respectively. Together, these results demonstrate that

VAF-CI is able to distinguish between and classify the complexity of the 3 chosen

tasks despite pre-processing methods that vary the length of the data array.

5.4 Discussion

In this study, we proposed and tested a novel metric for identifying complexity of a

manipulation task, termed variance-accounted-for based complexity index (VAF-CI).

The VAF-CI is obtained from computing the area above (Eq. 5.3) the cumulative

VAF-curve (Eq. 5.2) obtained after Singular Value Decomposition of the kinematic

hand joint data (Eq. 5.1). We tested the VAF-CI with respect to three different

manipulation tasks of distinct levels of complexity: reach-to-grasp, tool-use, and piano

playing. We found a significant effect of manipulation task on VAF-CI (Fig. 5-3 and

5-4), validating the index’s ability to measure task complexity.
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Importantly, the VAF-CI is a non-arbitrary metric to quantify task complexity.

Previously, researchers classified complexity using the number of synergies needed to

achieve a certain cumulative VAF [Santello et al., 1998, Todorov and Ghahramani,

2004]. As demonstrated by Table 5.1, this method is sensitive to the user-defined

cumulative VAF cut-off. In contrast, VAF-CI does not require such choices.

Additionally, we demonstrated that VAF-CI, can be used by an unsupervised

learning algorithm to identify different manipulation tasks (Fig. 5-5b and 5-5c).

K-means clustering was able to accurately identify the 3 different manipulation tasks

with an accuracy of 71.2%. Insight can be gleaned from observing how each tool of

the wire harnessing task was classified (Fig. 5-6a). The algorithm correctly classified

tool-use tasks with an accuracy of only 42.9%. Further inspection revealed that for

all 7 subjects, the algorithm classified Step 5, a task involving reaching, grasping

and plugging-in an electrical socket, as reach-to-grasp. Given this simple action,

this result seems reasonable. Moreover, the algorithm classified scissors tool-use as

reach-to-grasp in 6 of the 7 subjects. This may occur because the motion of the joints

in the hand is physically constrained by the scissors, leading to motion composed

of fewer synergies. Screwdriver reach-to-grasp was always correctly classified, while

screwdriver tool-use was classified as tool-use in 6 of the 7 subjects and piano playing

in the other. This emphasizes the clear difference in the manipulation complexity

required to grasp a screwdriver versus to use it. Notably, this difference was captured

by the VAF-CI. Moreover, three of the six piano pieces classified as tool-use were when

subjects played J. S. Bach, Prelude in C Major, BWV 846 – a piece of beginner

level [Bach, 2011]. Additionally, Fig. 5-6b demonstrates that even within piano

playing there was a spectrum of manipulation complexity and VAF-CI captured this;

notoriously complex pieces, such as F. Chopin, Étude Op. 25, No. 11 [Chopin

and Palmer, 1995], were identified as the most complex. Importantly, k-means

clustering correctly identified the extremity of piano playing with an accuracy of

82.4% and reach-to-grasp with an accuracy of 88.6%; it never classified piano playing

as reach-to-grasp nor reach-to-grasp as piano playing. This emphasizes the robustness

of our metric for identifying manipulation tasks without any prior knowledge.
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5.4.1 Limitations

It is important to emphasize here that manipulation complexity can be composed

of many different factors – such as tactile, visual and proprioceptive complexity, and

force, torque or stiffness modulation. A limitation of the variance-accounted-for based

complexity index is that it only takes into account one factor: joint coordination,

or lack-there-of. Thus, in this study, when referring to complexity, VAF-CI

defines complexity as increasing solely with the required individuated joint motion.

Nonetheless, it is still a novel and continuous metric that can non-arbitrarily quantify

the complexity of different tasks. As such, it is superior to the common practice of

arbitrarily identifying an integer number of significant synergies.

One might interpret VAF-CI as a measure of variability. With this interpretation,

greater variability in the task will inherently result in a higher VAF-CI. This means

that when a task can be performed in multiple ways, making it generally ‘easier’

to perform, the complexity index increases. Conversely, if a task requires very

precise actions with minimal variability, the index will likely decrease. However,

this interpretation only holds if you set up your data matrix prior to SVD in a

manner such that you have observed a subject do a repetitive task. In this case, if a

subject uses different strategies each time during a repetitive task, the VAF-CI will

likely yield higher values. This highlights that VAF-CI should be used to differentiate

between the complexities of different non-repetitive tasks. Nevertheless, this insight

presents an intriguing avenue for future research on the VAF-CI metric: determining

its efficacy in quantifying user skill for a particular, repetitive manipulation task. We

hypothesize that tasks requiring greater skill and precision would yield lower VAF-CI

values among experts compared to novices.

5.4.2 Implications

A major challenge in manipulation of dexterous robotic hands is the “curse of

dimensionality” [Bellman, 1958]. Reducing the control space to a subset of synergies

is one solution to this problem [Santello et al., 2016]. This has led to the design
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of many synergy-based dexterous robot hands [Catalano et al., 2014, Laffranchi

et al., 2020, Brown and Asada, 2007, Varol et al., 2014, Matrone et al., 2012, Furui

et al., 2019]. However, these designs often ignore the fact that synergies may stem

from biomechanics as opposed to ease of neuromotor control. In fact, Todorov

et al. [Todorov and Ghahramani, 2004] found that—when asked to individually

actuate each joint in the hand—subjects required significantly more synergies (∼8.7),

representing an upper limit to finger individuation and thus manipulation complexity.

Contrarily, grasping studies generally report 2-3 significant synergies [Santello et al.,

1998,Mason et al., 2001,Weiss and Flanders, 2004,Santello et al., 2002], representing

the lower end of finger individuation and thus manipulation complexity. The study

presented here introduced a synergy-based analysis of piano playing, a complex

manipulation task that requires years of training. Future study of piano playing

could provide an upper limit of manipulation complexity during a functional task.

Moreover, the distinct difference between reach-to-grasp, tool-use, and piano playing

demonstrates the need to study a wide array of manipulation tasks if we truly want to

replicate human dexterity. Future work should investigate the synergies that emerge

from complex manipulation tasks as building blocks for manipulation.

Perhaps the greatest value of the proposed VAF-CI is as a metric for bio-inspired

learning from demonstration. One proposed solution to multi-finger dexterous

manipulation is to learn control from human demonstration [Qin et al., 2022].

However, as previously motivated, if we want our robots to perform dexterous

manipulation tasks, we should train them using a rich set of manipulation data.

As VAF-CI proved to be a reliable, continuous and robust indicator of manipulation

complexity, it can be used to ensure that a spectrum of manipulation tasks is presented

to a dexterous manipulator during learning from demonstration.

5.5 Conclusions

Here, we developed a novel complexity index, VAF-CI, able to objectively quantify

the complexity of a manipulation task. After measuring the kinematic behavior
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of the hand joints in three different manipulation tasks of increasing complexity

(reaching-to-grasp, tool-use and piano playing), the proposed index identified a clear

distinction between these groups. Moreover, it could be used by an unsupervised

learning algorithm to reasonably identify 3 different classes of manipulation. This

new metric could support the improvement of learning algorithms to achieve robot

dexterity from human demonstration and human bio-inspiration. Future work should

investigate human dexterity during reasonably complex manipulation tasks quantified

by the VAF-CI.
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Chapter 6

Conclusions

The goal of this thesis was to provide a descriptive understanding of human

manipulation in unimpaired subjects. To achieve this, human subject experiments

were conducted to uncover simplified control mechanisms used by humans (Figure

1-1). A summary of these results can be visualized in Figure 6-1. The icons

on the right side of the figure highlight the perception of stiffness study (Chapter

4) and force control study (Chapter 3). The former led to the indirect force

control formulation (adapted from Figure 3-1), while the latter highlighted that

mechanical impedance was essential to humans’ internal model. The icon of the mock

electrical cabinet (adapted from Figure 5-1) emphasizes that synergistic motion may

be used to simplify the planning of hand motor function during tool use and object

manipulation, as discussed in Chapter 2. However, it is important to note that these

synergies were task-dependent, suggesting the existence of a “synergy library” in which

task-dependent synergies are stored for various tasks [Tessari et al., 2024]. This raised

the question: how can we ensure that studied tasks represent the full spectrum of

human hand manipulation capabilities? The icon above the “Synergy Library” block

denotes VAF-CI, a metric that can be used to answer this question. In summary,

Figure 6-1 highlights how each chapter in this thesis contributes to the development

of a descriptive understanding of human manipulation in unimpaired subjects. Below,

we will recap in greater detail the contributions of this thesis.
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Figure 6-1: A descriptive understanding of human manipulation. Here we
highlight the contributions of this thesis that have pushed towards a descriptive
understanding of human manipulation in unimpaired subjects. Each icon highlights
the particular study that contributed to a finding in the developed block diagram.

In Chapter 2, our aim was to uncover evidence of kinematic hand synergies

during wire harness installation, a task involving the manipulation of complex

tools and objects. Our findings revealed a reduction in operational degrees of

freedom, indicating the presence of synergies during both reaching-and-grasping

and manipulation tasks. However, manipulation of a tool generally necessitated

more significant synergies than grasping the same tool. Moreover, manipulation

often required a different subset of synergies than reach-and-grasp. These results

underscore the nuanced complexities of functional hand use beyond basic grasping

actions, highlighting the importance of studying the human hand during functional

manipulation tasks beyond grasping.

Transitioning to Chapter 3, our focus shifted to human force regulation, addressing

an overlooked question from Chapter 2: how do humans manage force during

physical interaction? Contrary to longstanding assumptions in robotics, this study

revealed that the modulation of force is coupled to motion via mechanical impedance.

Moreover, in this work, we developed a simple mathematical model competent

to describe how humans control physical interaction and their limitations. These

findings have significant implications for the design of devices collaborating with

humans, emphasizing the importance of a quantitative model in understanding human

upper-limb force control.
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Chapter 4, building upon Chapter 3, delved into whether mechanical impedance

is essential to the human internal model. Using a perceptual study, we demonstrated

that humans can infer changes in limb stiffness from multi-joint limb motion. It

should be emphasized that this is quite a feat; stiffness is the relation between

motion and force, yet subjects were able to perceive stiffness using only motion

information. Notably, we identified that human perception of stiffness is dominated by

path information. These observations provide new insights into how humans interpret

motor actions and interactions, offering implications for fields such as robotics and

rehabilitation.

Finally, in Chapter 5, our aim was to address a question subtly provoked in

Chapter 2. While Chapter 2 established the potential of synergies to simplify

motor control during manipulation tasks, it also highlighted their task-specific

nature, raising the challenging question of ensuring that studied tasks represent

the full spectrum of human hand manipulation capabilities. Here, we proposed the

Variance-Accounted-For based Complexity Index (VAF-CI), a novel metric capable

of objectively quantifying the complexity of manipulation tasks. Validated across

various dexterous tasks, this index can ensure that future studies probe a wider range

of hand capabilities and synergistic behavior, offering new pathways for advancing

robot dexterity via bio-inspiration.

The insights in this thesis stemmed from human subject experimentation,

dedicated to uncovering the simple control mechanisms humans use for motor

function. This approach was not random but driven by the belief that understanding

these strategies requires direct human observation. Our research was driven by a

commitment to developing simple models of these mechanisms. Preferring simplicity

over complexity was not just a methodological choice but a strategy to ensure our

studies provided immediate, understandable insights. Simple models offer clarity that

complex systems often obscure, making it easier for both researchers and practitioners

to grasp human motor control principles and apply them to robotic systems and

rehabilitation techniques. This focus on simple, interpretable models distinguishes our

work, bridging the gap between human motor function complexity and the practical
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needs of robotics and rehabilitation, ensuring the insights we have uncovered will have

tangible impacts on these fields.

6.1 Potential Future Work

While this thesis has made notable strides toward achieving a descriptive

understanding of human manipulation in unimpaired subjects, thorough research

typically uncovers more questions than answers, and this study is no different. The

insights gained have shed light on numerous areas primed for deeper exploration. In

the pursuit of furthering this field, presented here are several potential avenues for

future research.

6.1.1 Kinematic Hand Synergies

In the literature, there has been a persistent question regarding the neural basis

of synergies [Santello et al., 2016]. The key question is, are synergies the result

of physical constraints and biomechanics, or neuromotor control? The answer to

this questions speaks to whether or not synergies are in fact used as a simplifying

control technique. In Chapter 2, we analyzed kinematic data without considering

constraints imposed by the tools or the external environment, thus hindering our

ability to address this question. One potential method to address this issue involves

a more refined analysis, such as projecting measured variations onto the tangent

plane of the constraints. This approach could provide a more accurate estimation

of biological synergies, rather than those influenced by mechanical constraints.

For instance, if a subject is required to slide their fingertip along a surface, the

surface’s shape would impact the recorded finger kinematics and resultant singular

value distribution. However, projecting the measured variation onto the plane

tangent to the constraint could yield a better estimate of intrinsic motor control

strategies, isolating them from extrinsic task-specific adaptations. In fact, similar

work has been conducted in [Sharma, 2023]. However, it’s analysis could be extended

to the functional manipulation task presented here. Future research could focus
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on developing analytical techniques that incorporate these considerations, thereby

improving the fidelity of synergy analysis in complex, constrained manipulation tasks.

Moreover, exploring kinematic hand synergies further offers a promising avenue

for future work, particularly through the development of a “Manipulation Taxonomy.”

This taxonomy aims to distill the essential synergies, or canonical motions,

underpinning dexterity in complex manipulation tasks into a set of simple models.

By identifying these core synergies, researchers can advance our understanding of

hand manipulation, providing valuable insights for both theoretical exploration and

practical application in robotic and prosthetic design.

We envision that the proposed future work can be pursued through two main

research branches. The first branch focuses on human subject experiments in virtual

environments, where participants control an anthropomorphic robot in a simulated

environment that mirrors the subject’s real hand movements. By systematically

varying the subset of synergies available to the simulated hand, this approach aims

to pinpoint which synergies are vital for manipulation. This work not only seeks to

establish a Manipulation Taxonomy but also evaluates the efficacy and limitations of

synergy-based control strategies in complex tasks. Such investigations can enhance

the design and functionality of prosthetic devices, ensuring they more closely emulate

the dexterous capabilities of the human hand.

Simultaneously, the second research branch leverages the power of machine

learning to investigate how machines can emulate human dexterity with minimal

control inputs. Employing reinforcement learning within simulated environments, an

anthropomorphic hand will endeavor to accomplish manipulation tasks by adopting

a synergy-based control strategy. This approach facilitates the exploration of which

synergies AI utilizes in learning to manipulate objects, providing valuable insights

into efficient robot learning processes for achieving dexterous manipulation. These

dual research trajectories not only contribute to the development of a Manipulation

Taxonomy but also shed light on avenues to instill robots with human-like dexterity,

bridging the gap between human motor skills and robotic capabilities.
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6.1.2 Visual Perception of Stiffness

The visual perception of stiffness study presented in Chapter 4 opens up a whole new

line of research questions. Some might include:

• Can humans perceive damping from visual observation of motion?

• Can we extend the visual observation of motion task to a three link manipulator?

• Can humans perceive stiffness during the kinematic simulation of an

anthropomorphic dynamic walker?

• How do humans perceive stiffness during 3-dimensional motion?

The last question in this list can be addressed through a VR-based perceptual

experiment. Specifically, we will explore whether and how subjects can gauge the

impedance of a two-link arm moving within a 3D environment. These studies will not

only test the boundaries of human perceptual abilities but also serve as a foundation

for developing a software tool that applies computer vision and machine learning

algorithms to estimate limb impedance non-invasively. Looking further ahead, the

long-term goal of this research is to create a comprehensive tool that can accurately

measure limb dynamics and muscle activity without direct physical contact. This

tool will be rigorously validated through human subject experiments focusing on

upper-limb kinematics and dynamics. The development of such a non-invasive

impedance measurement tool holds the promise of wide-ranging applications, from

monitoring muscle health in the elderly to optimizing athletic training regimens. By

advancing our understanding of visual perception of stiffness and translating these

insights into practical tools, we can pave the way for innovative solutions that enhance

rehabilitation, and personal health monitoring.
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6.1.3 Variance-Accounted-For based Complexity Index

(VAF-CI)

The full potential of the Variance-Accounted-For based Complexity Index (VAF-CI)

metric remains largely untapped. Its expansion to musculature data holds promise

for uncovering insightful observations regarding movement pattern optimization in

skilled manipulators. We hypothesize that with extensive practice, highly skilled

individuals refine their movements to follow patterns engaging fewer synergies,

thereby minimizing musculature effort. This optimization may represent an efficient

strategy for reducing both cognitive and physical demands associated with dexterous

manipulation.

A forthcoming research endeavor could entail capturing hand kinematics from

skilled and novice dexterous manipulators, such as comparing an experienced

attending surgeon to a first-year resident during simulated surgical procedures. The

objective is to quantify movement complexity and discern differences in synergy

utilization between these groups using the VAF-CI and synergy-based analysis. This

investigation aims to reveal how experience and skill level influence hand movement

coordination. By elucidating movement strategies contributing to surgical proficiency,

this research could streamline surgical education, potentially minimizing errors and

enhancing patient outcomes.

In the future, our overarching objective is to develop tools that streamline

the acquisition of complex motor skills. We aim to create a sophisticated tool

capable of autonomously monitoring surgical proficiency using VAF-CI and providing

immediate, synergy-driven feedback. Such a tool has the potential to significantly

transform surgical training methodologies.

Beyond surgery, insights gleaned from expert manipulators could aid individuals,

such as stroke patients, in regaining lost motor skills. This approach holds promise for

improving rehabilitation processes by providing targeted, synergy-focused guidance

to restore dexterity. Furthermore, a deeper, model-based comprehension of dexterous

human activities, spanning surgery, sports, and artistic performance, could inspire
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advancements in robotic automation, enhancing automated systems’ ability to

replicate or augment human movements. Through this multifaceted exploration, the

research aims to expand our understanding of human motor control and dexterity,

with far-reaching implications for enhancing both human and robotic capabilities.

6.2 Outlook

In a world increasingly dominated by the narratives of artificial intelligence (AI)

and machine learning (ML), the enduring value of simple models underscores the

significance of foundational science in unraveling complex systems. In the pursuit of

ever more intricate computational models, there remains a critical need for scientists

and engineers dedicated to the fundamental science behind human motor control

and its practical applications. Simple models, characterized by their clarity and

interpretability, serve as a vital complement to the complexity of AI and ML, offering

a crucial link between theoretical insights and real-world implementations. Embracing

simplicity represents a deliberate approach to understanding the intricacies of human

motor function and designing robotic systems that emulate the grace and efficiency

of natural human movements. It is within this realm that engineers, focusing on the

foundational aspects of motor control, can make significant strides, leveraging simple

models to uncover the principles that enable humans to interact seamlessly with their

surroundings.

This perspective fundamentally reshapes how we approach the study of human

motor control and its integration into robotics. If humans can navigate their

environment effectively through simplified, intuitive models, then robotics has the

opportunity to adopt a similar approach. By prioritizing simple, interpretable models,

researchers and engineers can develop robotic systems that not only comprehend

but also adapt to the nuances of human interaction. These systems would possess

the ability to execute complex tasks without the need for elaborate computational

modeling, mirroring the efficiency and adaptability of human motor function.

Furthermore, the emphasis on simple models illuminates the potential for these
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models to serve as a foundation for more advanced learning and adaptation in robots.

Just as humans learn and refine their motor skills over time, robots equipped with

simple, interpretable models could be designed to evolve and adapt their interactions

based on experience, achieving a level of dexterity and responsiveness akin to human

capabilities.

In conclusion, the case for simple models in studying human motor control and

developing robotic systems is compelling. It aligns with the inherent efficiency of

human motor strategies and offers a pathway toward creating robots that can more

naturally and effectively interact with their environment and with humans. This

approach not only facilitates a deeper understanding of the underlying principles of

human motor control but also advances the field of robotics towards more intuitive,

accessible, and adaptable systems.

A video presentation of this thesis can be found at:

https://www.youtube.com/watch?v=u2eCJHqEGww
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Appendix A

The Study of Complex Manipulation

via Kinematic Hand Synergies: The

Effects of Data Pre-Processing

The exploration of kinematic hand synergies, employing matrix decomposition

techniques such as singular value decomposition, as undertaken in Chapters 2 and 5,

suggests that humans potentially regulate a predetermined subspace of motions during

manipulation tasks, commonly referred to as synergies. However, the manner in which

data is pre-processed significantly influences the quantitative conclusions drawn about

these synergies. This chapter aims to elucidate the impact of data pre-processing

on the analysis of hand synergies by examining both numerical simulation and real

kinematic data from a complex manipulation task, namely piano playing. The

findings indicate that centering the data, achieved by removing the mean, emerges as

the most suitable pre-processing technique for studying kinematic hand synergies,

This chapter is adapted from a paper titled, “The Study of Complex Manipulation

via Kinematic Hand Synergies: The Effects of Data Pre-Processing” [West et al., 2023]

published in the 2023 International Consortium on Rehabilitation Robotics (ICORR).

This work was done in collaboration with Federico Tessari and Neville Hogan.

A video summary of this chapter can be found at:

https://www.youtube.com/watch?v=J1Xp5Ekl6JQ
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A.1 Introduction

The human hand is the end-effector that serves humans in interaction with themselves,

the external environment, and other individuals [Klopsteg et al., 1955]. It is an

anatomically complex system comprised of 27 bones and 30 muscles [Kandel et al.,

2013] that are controlled to perform highly dexterous manipulation tasks [Napier,

1956,Diogo et al., 2012]. All in all, the hand presents more than 20 degrees-of-freedom

(DOFs) [Kandel et al., 2013], thus providing a highly redundant control space to

interact with the environment which, for a rigid object, has at most 6 DOFs.

An average of 800,000 individuals in the US suffer from Cerebral Vascular Accident

(CVA) [Virani et al., 2020] every year, while roughly 700,000 upper-limb hand

amputees currently live in the United States [McDonald et al., 2020,Ziegler-Graham

et al., 2008]. Losing hand functionality poses a great barrier for these individuals

in a society designed for humans with dexterous hands. This has a major

detrimental impact on their quality of life as they lose their capability to perform

numerous activities of daily living. To improve the available rehabilitation and

assistive technologies for impaired individuals (e.g., hand prostheses and rehabilitative

exoskeletons), it appears necessary to deepen the understanding of how humans

control and move their hands.

Among the many research questions about the human hand, there is growing

interest in comprehending how humans seamlessly move a highly redundant system

without particular apparent effort. Santello et al. were the first to suggest that

kinematic synergies of the hand (i.e., linear combinations of joint motions) could

provide a reasonable reduction of dimensionality, decreasing the number of effective

DOFs to be controlled [Santello et al., 1998]. Specifically, they observed that most (>

80%) of the joint kinematic variance during grasping could be described by only two

synergies. Subsequent studies confirmed similar results [Santello et al., 2002,Santello

et al., 2016,Todorov and Ghahramani, 2004,Weiss and Flanders, 2004,Mason et al.,

2001].

From a mathematical point of view, these researchers approached the study
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of variance by means of matrix decomposition techniques. Specifically, they took

advantage of Singular Value Decomposition (SVD) [Stewart, 1993] and Principal

Component Analysis (PCA) [Pearson, 1901]. These methods allow the decomposition

of a non-square matrix - containing the collected kinematic data of the hand -

into singular vectors (or principal components) and associated singular values (or

principal component scores) to investigate the distribution of variance. However,

pre-processing of the hand kinematic data before performing the decomposition plays

a crucial role. For example, [Santello et al., 1998] centered each joint’s data around

its mean value, [Todorov and Ghahramani, 2004] considered two cases: joint data

re-scaled to contain values between 0 and 1, and joint data re-scaled to have unit

variance, while [Mason et al., 2001] used the raw data binned to fixed increments

of time between start and end of a trial. These pre-processing approaches led to

similar conclusions in terms of dimensionality reduction, but different quantitative

estimates of the effective amount of this reduction. While some have explored how

data structure affects synergy extraction [Zhao et al., 2022,Lambert-Shirzad and Van

Der Loos, 2017] and others have investigated how electromyography pre-processing

changes the resultant muscle synergies [Kieliba et al., 2018], to our knowledge no-one

has explored how pre-processing affects kinematic hand synergies.

In this work, we present an analysis of the effect of the most common

pre-processing techniques on the dimensionality reduction problem. First, to provide

intuitive understanding of the effect of the different pre-processing methods, we show

a numerical example for a simulated 2 degree-of-freedom (DOF) system. Then to

validate the intuition gained from the 2 DOF system, we apply the same approach

to real hand kinematic data obtained from a subject performing a complex hand

manipulation task: piano playing.

Studying piano playing has two intrinsic advantages. First, it is widely recognized

to be a complex manipulation task [Chen et al., 1997] that requires specific training

and years of practice [Krings et al., 2000]. Thus, it should exhibit a more refined

distribution of variance than a simpler task such as object grasping. Second,

playing piano requires limited range-of-motion trajectories of the joints, thanks to the
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constraint imposed by the piano keyboard. Joint trajectories are generally curved, but

over small ranges of motion, a linear approximation may be satisfactory. Therefore,

piano playing is an ideal task to evaluate linear mathematical tools such as Singular

Value Decomposition. Moreover, the current literature [Santello et al., 2002,Santello

et al., 2016,Todorov and Ghahramani, 2004,Weiss and Flanders, 2004,Mason et al.,

2001] largely studies grasping of common household items, which approximates a

lower bound on the repertoire of the hands’ capabilities. However, if we want to restore

activities of daily living that involve manipulation it is important to specifically study

hand manipulation. Studying piano playing can help approximate an upper bound

on the hands’ capabilities.

The results presented in this study help to shed light on the quantification - and

correct interpretation - of the synergistic behavior of the human hand. These results

have implications for the design of assistive and rehabilitative technologies.

A.2 Methods

A.2.1 Theoretical Background

Consider a data matrix 𝑋 ∈ R𝑛×𝑚, where 𝑛 represents the number of observations

(e.g., the time evolution of a joint angle or degree of freedom) and 𝑚 represents

the number of features (e.g., the number of analyzed DOFs) for a given task. The

main goal in the study of kinematic hand synergies is to mathematically process i.e.,

decompose, the matrix 𝑋 to identify patterns (synergies) that could be related to a

reduction of the dimensionality of the control problem. This is a proposed solution

to the infamous “curse of dimensionality”, which states that higher degree-of-freedom

systems are more difficult to control [Bellman, 1966]. Dimensionality reduction is

often found via SVD.

In SVD, the matrix 𝑋 is decomposed into the product of an orthonormal matrix

𝑈 , a matrix with values only on its main diagonal 𝑆, and another orthonormal matrix
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𝑉 :

𝑋 = 𝑈 · 𝑆 · 𝑉 𝑇 (A.1)

where 𝑈 ∈ R𝑛×𝑛, 𝑆 ∈ R𝑛×𝑚 and 𝑉 ∈ R𝑚×𝑚. From a geometric perspective, these

operations could be interpreted as the succession of a rotation 𝑈 , a stretch 𝑆 and

another rotation 𝑉 𝑇 . Moreover, the principal diagonal elements of 𝑆, also known as

singular values 𝜎𝑖, are related to the eigenvalues 𝜆𝑖 of the square matrix 𝑋𝑇 · 𝑋 by

the following relationship: 𝜎2
𝑖 = 𝜆𝑖 for 𝑖 = 1, ...,𝑚.

Mathematically, SVD provides information about the matrix 𝑋’s distribution over

the hyperspace R𝑛×𝑚; of particular interest is the data distribution over the feature

space R𝑚. The matrix 𝑉 𝑇 can be used to obtain the principal directions in the

feature space, while the singular values - obtained from 𝑆 - return an estimate of the

magnitude of variance projected onto each principal direction.

To obtain a measure of the data variance-accounted-for (VAF) by a given synergy,

we used the singular values along the principal diagonal of matrix 𝑆. Specifically, we

report VAF as a decimal, ranging from 0 to 1 obtained by dividing the square of a

singular value by the total sum of the squares of the singular values: 𝑉 𝐴𝐹 (𝑖) = 𝜎2
𝑖/

∑︀
𝜎2
𝑖

for 𝑖 = 1, ...,𝑚.

Pre-processing operations performed on the data matrix, 𝑋, will, of course, affect

the singular value decomposition and the resultant estimation of the related VAF for

a given analyzed motion. The important question is how and how much.

In the work presented here, we considered four different pre-processing operations

that have previously been used in the literature for kinematic hand synergy

decomposition: (1) no pre-processing [Mason et al., 2001], (2) removing the mean

[Santello et al., 1998], (3) z-score [Todorov and Ghahramani, 2004], and (4) range

0-1 [Todorov and Ghahramani, 2004]. Mathematically, the latter three approaches

result in three new data matrices:
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𝑋𝑟𝑚 = 𝑋 −𝑚𝑒𝑎𝑛(𝑋) (A.2)

𝑋𝑧𝑠 =
𝑋 −𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑡𝑑(𝑋)
(A.3)

𝑋𝑟01 =
𝑋 −𝑚𝑖𝑛(𝑋)

𝑚𝑎𝑥(𝑋 −𝑚𝑖𝑛(𝑋))
(A.4)

where 𝑋𝑟𝑚 represents a data matrix with the mean removed, 𝑋𝑧𝑠 represents a

z-scored data matrix, and 𝑋𝑟01 represents a data matrix scaled between 0 and 1.

Excluding trivial cases in which the data matrix features 𝑥(1 : 𝑛,𝑚) already have

either zero mean, unit variance or a 0-1 range, it is evident that the singular values

and related orthogonal directions 𝑣𝑖 ∈ 𝑉 𝑇 will change due to pre-processing.

A.2.2 Numerical Validation

A set of numerical simulations was performed in Matlab 2022b (Mathworks, USA) to

observe the changes in singular value decomposition due to the different pre-processing

methods. To provide an intuitive understanding, a 2 DOF system (𝑚 = 2) was

considered to facilitate graphical interpretation of the numerical simulations. The

two DOFs were linearly correlated with the addition of external noise:

𝑥2(𝑖) = 𝑘1𝑥1(𝑖) + 𝑘0 + 𝜖(𝑖) 𝑖 = 1, ..., 𝑁 (A.5)

where 𝑥1(𝑡), 𝑥2(𝑡) represent two features of the system, 𝑘1, 𝑘0 are the linear

correlation parameters between these features, 𝜖(𝑡) is an external disturbance, and

𝑁 represents the number of simulated points. The results presented in Section A.3.1

used the following simulation parameters: 𝑘1 = 0.50, 𝑘0 = 3, and 𝑁 = 101. SVD was

performed on the data matrix 𝑋 = [𝑥1, 𝑥2] ∈ R𝑁×2 and the results of all the proposed

pre-processing techniques.
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Figure A-1: Experimental setup of one subject playing the piano while kinematic
data of their right hand was recorded with a CyberGlove.

A.2.3 Piano Playing

To validate the intuition provided by the numerical example, a preliminary

experimental validation on real human hand kinematic data was performed with

a single subject1 performing a complex manipulation task: playing the piano (Fig.

A-1). He was informed about the experimental procedure and agreed to sign a consent

form. All procedures were approved by MIT’s Institutional Review Board.

Piano playing was selected due to its evident complexity and high level of required

skill. This was expected to address a common weakness of synergy analysis via SVD:

most of the data variance is ‘lumped’ into the first few synergies2, compromising the

reliability of numerical differences between the higher-order synergies. Piano-playing

was expected to evoke a wider variability of the extracted synergies, thus avoiding the

effect of cumulative lumping of VAF into the first few synergies. This would provide

a better understanding of the effect of different pre-processing methods.

The subject separately performed a set of 7 piano pieces (Chopin: Nocturne
1The subject was a 31 year old, right-handed skilled piano playing male who had 10 years of

trained piano practice and 20 years of overall piano experience.
2Note, in the piano playing study the angles of the 23 joints of the hand comprise the feature

space. Thus, a reported synergy is a vector (hyperspace) representing a common hand configuration
which is described by angles of the joints in the hand.
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Op. 9 No. 2; Chopin: Waltz Op. 64 No.1; Giovanni Allevi: Come Sei Veramente;

Hans Zimmer: Oogway Ascends; W.A. Mozart: Turkish March; Christopher Norton:

A Whimsy; Paul Desmond: Take Five) while wearing a CyberGlove (CyberGlove;

Virtual Technologies, Palo Alto, CA), a glove with embedded sensors that measure

joint kinematics (Fig. A-1). Specifically, the flexion of the distal interphalangeal

(DIP), proximal interphalangeal (PIP), and metacarpophalangeal (MCP) joints of

the four fingers were measured. Additionally, the abduction (ABD) of the four

fingers at the MCP joints was measured. At the thumb, the flexion at the MCP

and interphalangeal (IP) joints, abduction (ABD) at the carpometacarpal joint, and

rotation (ROT) about an axis passing through the trapeziometacarpal joint were

measured. Lastly, palm arch (PA) and wrist (W) pitch and yaw were measured. The

subject wore the CyberGlove on his right hand. The CyberGlove collected samples

at ∼ 200 Hz with a nominal angular resolution of < 0.1∘.

Synergies (i.e., linear combinations of the joint DOFs) and their VAF were

extracted using the SVD algorithm presented above. To identify the number of

significant synergies, we followed the method of [Lambert-Shirzad and Van Der Loos,

2017]. Specifically, we report the number of synergies required to achieve at least 90%

VAF and where inclusion of another subsequent synergy did not add an additional

5% VAF. To determine if there was an effect of pre-processing on the number of

significant synergies, these values were submitted to a 4 (pre-processing type) x 1

repeated-measures ANOVA.

Moreover, we compared the calculated kinematic hand synergies, 𝑉 , across

pre-processing types. To do so, we computed the product of each individual piece’s

synergies identified by a pre-processing type with those of a different pre-processing

type:

𝐶 = |𝑐𝑜𝑠(𝜃)| = |𝑉 𝑇
𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔1 · 𝑉𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔2| (A.6)

This resulted in a matrix consisting of the cosine similarities, 𝐶(𝑖, 𝑗), between

synergies where i denotes the 𝑖𝑡ℎ synergy of pre-processing 1 and j denotes the 𝑗𝑡ℎ

synergy of pre-processing 2. Here, we report the magnitude of these cosine similarities,
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ranging from 0 to 1. If synergies were the same irrespective of pre-processing

(i.e. the data spans the same hyperspace), we would expect a matrix of cosine

similarities with ones on the diagonal and zeros otherwise. In all other cases (i.e.

𝑉𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔1 ̸= 𝑉𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔2), the resulting matrix, 𝐶 ∈ R𝑚×𝑚, will be an asymmetric

square matrix.

All data processing and statistical analyses were performed using custom scripts

in MATLAB. The significance level for statistical tests was 𝛼 = 0.05.

A.3 Results

A.3.1 Numerical Validation

In Fig. A-2 we present singular vector decomposition of numerical data as described

in Section A.2.2. There the raw and pre-processed data can be seen. It is seen that

in the raw data case, the first eigenvector does not appropriately represent the slope

of the data (Fig. A-2a).

The coefficients of the first and second eigenvectors are shown in Fig A-3a-b.

Given that the slope of the data was 0.50 (i.e., 𝑘1 = 0.50), we expect the ratio of the

coefficients of the first eigenvector to equal ∼ 0.50 with some error due to the added

noise (i.e., 𝑉 (2, 1)/𝑉 (1, 1) ∼ 0.50). The observed ratio was 1.177, 0.550, 1.000, and

0.952 in the raw, mean removed, z-score, and range 0-1 data, respectively. Note, the

mean values of the raw data are 6.022 and 5.013; their ratio is 1.201. Additionally,

the mean values of the range 0-1 data are 0.486 and 0.503; their ratio is 0.967. This

indicates when the data is not centered, the first synergy is directed towards the mean

of the data.

Fig A-3c shows the VAF of each eigenvector. The VAF of the first eigenvector was

0.995, 0.968, 0.957, and 0.989 in the raw, mean removed, z-score, and range 0-1 data,

respectively. Evidently, when the data was not pre-processed, the second synergy was

considered to negligibly contribute to the variation of the data. While it may appear

to be an advantage to have a system adequately described by fewer synergies, it is
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Figure A-2: Numerical validation data of the various pre-processing types are
shown by the light blue dots. Additionally, the computed 1𝑠𝑡 and 2𝑛𝑑 eigenvectors
(i.e. synergies) are shown by the red and blue lines, respectively. (a) denotes the raw
data while (b), (c) and (d) denote the data after the pre-processing described by Eq.
2, 3, and 4, respectively.

important to recall that in the raw data case the first synergy was incorrect; rather

than representing the co-variation in the data it reflected the data mean.

A.3.2 Piano Playing

Fig. A-4 demonstrates the VAF in the piano experiments averaged across pieces for

each pre-processing type. It is seen that, on average, two synergies achieve 0.90 VAF

when data is not pre-processed or set to range from 0 to 1. However when the data
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Figure A-3: Eigenvectors and VAF of the numerical validation data. Different
colors denote different pre-processing types.

has the mean removed or is z-scored, 6 and 9 synergies (respectively) are needed to

reach 0.90 VAF.

We quantified the number of significant synergies based on each data

pre-processing type. The average and standard deviation is reported in Table A.1.

A one-way ANOVA revealed a significant effect of pre-processing on the number of

significant synergies (𝐹3,24 = 94.47, 𝑝 = 1.99𝑒 − 13). Post-hoc t-tests (Bonferroni

corrected 𝛼 = 0.05/6 = 0.0083) revealed that the range 0-1 data had a statistically

fewer number of significant synergies than the raw data (𝑝 = 3.67𝑒 − 04), data with

the mean removed (𝑝 = 1.23𝑒− 08), and z-score data (𝑝 = 3.35𝑒− 08). Moreover, the

raw data had a statistically fewer number of significant synergies than the data with

the mean removed (𝑝 = 3.70𝑒− 10), and z-score data (𝑝 = 2.28𝑒− 07). Further, the

data with the mean removed had a statistically fewer number of significant synergies
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Figure A-4: VAF of each synergy in the piano experiment averaged across piece.
Different colors denote different pre-processing types. Lines show the cummulative
sum of the VAF. Errorbars are ±1SD. Due to space constraints, only the first 10
synergies are shown.

𝑋 𝑋𝑟𝑚 𝑋𝑧𝑠 𝑋𝑟01

Avg 2.29 6.14 9.00 1.14
SD 0.49 0.90 1.63 0.38

Table A.1: Number of significant synergies in the piano playing study based
on data pre-processing.

than the z-score data (𝑝 = 0.0016).

To compare the synergies across pre-processing type, we computed the magnitude

of the similarity coefficients between the matrices of synergies. The 6 comparisons,

stemming from the pairwise combinations of the 4 pre-processing types (i.e.,
(︀
4
2

)︀
= 6),

are reported in Fig. A-5 for a representative piece. If two types of pre-processing

methods lead to similar synergies we would observe a matrix of ones on the diagonal

182



Figure A-5: Comparison of synergies across different pre-processing types
for one representative piece. The matrix of cosine similarities between synergies of
different pre-processing types is presented for the Chopin Waltz Op. 64 No. 1. A black
value denotes a cosine similarity of 1 and a white value denotes a cosine similarity of
0. Due to space constraints, comparisons of only the first 10 synergies, ordered by
decreasing VAF, are shown.
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and zeros otherwise. Clearly this is not the case. In fact, when comparing the raw data

synergies with the ones obtained from removing the mean (Fig. A-5a), we observe

that there is a large similarity in the subdiagonal of the matrix of cosine similarities.

High similarity is also seen in the superdiagonal when we compare the z-score data

synergies and the range 0-1 synergies (Fig. A-5f). These relations were also observed

in the pieces not reported here.

A.4 Discussion

A.4.1 Effects of Centering the Data

The mean removed and z-scored data are centered while the raw and the range 0-1

data are not. In Fig A-3c, it is seen that the first synergy of non-centered data has

a greater VAF than the centered data. This was also observed in the piano study’s

resultant synergies (Fig. A-4). Due to the large first synergy VAF, the non-centered

data had statistically fewer significant synergies than the centered data (Table A.1).

In the validation data, Fig A-2a showed that the first eigenvector did not align

well with the expected principal direction of the data. Recall that the validation data

was set up using Eq. A.5, where the slope, 𝑘1, was 0.50. Thus, we expected the ratio

of the coefficients of the first eigenvector (i.e., 𝑉 (2, 1)/𝑉 (1, 1)) to be 0.50. This was

not the case for the raw data – 𝑉 (2, 1)/𝑉 (1, 1) = 1.18. Fig A-2a suggests that this

first synergy was used to reach the center of the data, resulting in an eigenvector

whose coefficients did not tell us how our data co-varied. Moreover, this relationship

was also observed in the piano data. The cosine similarity matrix was computed

to compare synergies across pre-processing types (Fig. A-5). If the synergies were

similar, we would have observed a matrix of ones on the diagonal and zeros otherwise.

Figure A-5a shows a matrix that contains high similarity on the subdiagonal when

comparing the raw data synergies to the ones obtained from removing the mean.

Given this in conjunction with the observation made in Fig A-2a, we hypothesize

that the first synergy in piano playing is similarly used to center the data, while the
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subsequent synergies inform us how the joints of the hand co-vary. Moreover in Fig.

A-5e, the cosine similarity matrix between the z-score data synergies and the range 0-1

data synergies has high similarity in the superdiagonal. Again, the range 0-1 data is

not centered, suggesting that the first synergy centers the data, while the subsequent

synergies inform us how the joints of the hand co-vary. In sum, not centering the data

leads to a first-synergy-dominated behavior that is not representative of the principal

directions of motion.

A.4.2 Effects of Changing Data Variance

The z-scored and range 0-1 data change the variance of each DOF while the raw

data and the data with the mean removed do not. Specifically, z-scoring forces each

DOF to unit variance. As such, we are unable to determine how much individual

DOFs co-vary with one another. This is represented by the eigenvectors of the data

presented in Sections A.2.2 and A.3.1. We set up these data using Eq. A.5, where

the slope, 𝑘1, was 0.50. Thus, we expected the ratio of the coefficients of the first

eigenvector (i.e., 𝑉 (2, 1)/𝑉 (1, 1)) to be 0.50. In the z-scored and range 0-1 data this

ratio was 1.00 and 0.95, respectively. Because the variance of the data was changed,

information about how joint motions changed in relation to one another was lost.

Thus, the ratio of the first eigenvector coefficients was constrained to 1.00, due to

z-scoring, as opposed to the expected value of 0.50.

Applying this understanding to kinematic hand synergies, we conclude that

reducing the variance of the data would lead us to a synergy that does not describe

how one joint varies with another, rather just that the two are related. For example,

let’s say 𝑥1 and 𝑥2 in Eq. A.5 represent flexion/extension of the index PIP and DIP.

Z-scoring the data would result in a synergy that whenever the PIP flexes (or extends)

the DIP also flexes (or extends) the same amount. However, based on the data, this

is not true; whenever the PIP flexes (or extends), the DIP flexes (or extends) half

that amount. To conclude, changing the variance of the data during pre-processing

would result in a synergy that does not describe how the several DOFs co-vary.

In this study, we do not have a physiological ground truth of the synergies used in
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the piano playing task as we do not have access to humans’ internal model. However,

we can derive a reasonable understanding of the dimensionality reduction provided

by the linear combinations of hand movements using our knowledge of linear algebra

and the intuition provided by the numerical example in Section A.3.1. In sum,

not centering the data during pre-processing will result in a dominant first synergy

that aims to center the data (Fig. A-2a and A-2d), leading to a greatly reduced

significant number of synergies. Moreover, changing the variance of the data during

pre-processing will lead to a synergy that demonstrates that certain DOFs do, indeed,

co-vary but it will not quantify how much (i.e., the ratio between them). Thus, if

you are interested in conducting SVD to both accurately estimate the number of

significant synergies and how each DOF co-varies with another in a given synergy,

you should center your data but not change its variance. This is consistent with the

pre-processing step of removing the mean.

A.4.3 A Geometrical Understanding

Understanding that Singular Value Decomposition decomposes a data matrix, 𝑋,

into a product of a rotation matrix, 𝑈 , a (diagonal) stretch matrix, 𝑆 and another

rotation matrix, 𝑉 𝑇 provides insight into how pre-processing methods may affect the

decomposed synergies. Specifically, a pure rotation of the data matrix, 𝑋, would

lead to a pure rotation of the eigenvectors. Moreover, a heterogeneous stretch of each

DOF in 𝑋 will lead to heterogeneous changes of the eigenvalues, resulting in different

VAFs. In the z-score 𝑋𝑧𝑠 and range 0-1 𝑋𝑟01, transformations presented here, each

feature (i.e., joint DOF) is separately scaled; that is a heterogeneous stretch. Thus,

the VAF of each feature will be accordingly altered.

A.4.4 Implications for Robotic Rehabilitation

The design of rehabilitative devices for the hand is still in search of the best trade-off

between number of actuated DOFs, and device function, appearance, and comfort

(e.g., minimized weight and size). In this scenario, prosthetic hand designs that
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exploit fewer actuators to move multiple joints represent a growing portion of the

research prototypes [Laffranchi et al., 2020, Varol et al., 2014, Brown and Asada,

2007,Catalano et al., 2014]. Moreover, clinicians have used synergies as a basis for

rehabilitation post Cerebral Vascular Accident [di Luzio et al., 2022, Singh et al.,

2018]. Thus, the understanding of how pre-processing affects synergy decomposition

presented here can better inform the selection of the quantity and kinematic coupling

of synergies that assistive and prosthetic hand devices should implement.

A.5 Conclusion

This work investigated the role of data pre-processing on the extraction of kinematic

hand synergies. Using numerical simulation and human hand kinematic data of a

subject performing playing the piano, we showed that removing the mean appears to

be the best approach to minimize error in the interpretation of computed synergies

and their related VAF. This understanding may inform the design of devices that

replicate and rehabilitate the human hand. Future work will aim to expand the

study of shoulder, arm and hand kinematics during piano playing to uncover the role

of synergy decomposition in this complex manipulation task.
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