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Abstract— The study of kinematic hand synergies through
matrix decomposition techniques, such as singular value de-
composition, supports the theory that humans might control
a subspace of predefined motions during manipulation tasks.
These subspaces are often referred to as synergies. However,
different data pre-processing methods lead to quantitatively
different conclusions about these synergies. In this work, we
shed light on the role of data pre-processing on the study of
hand synergies by analyzing both numerical simulation and real
kinematic data from a complex manipulation task, i.e., piano
playing. The results obtained suggest that centering the data,
by removing the mean, appears to be the most appropriate pre-
processing technique for studying kinematic hand synergies.

Index Terms— Synergy, Singular Value Decomposition, Hu-
man Hand, Manipulation, Task Complexity, Rehabilitation

I. INTRODUCTION

The human hand is the end-effector that serves humans in
interaction with themselves, the external environment, and
other individuals [1]. It is an anatomically complex system
comprised of 27 bones and 30 muscles [2] that are controlled
to perform highly dexterous manipulation tasks [3], [4], [5].
All in all, the hand presents more than 20 degrees-of-freedom
(DOFs) [2], thus providing a highly redundant control space
to interact with the environment which, for a rigid object,
has at most 6 DOFs.

An average of 800,000 individuals in the US suffer from
Cerebral Vascular Accident (CVA) [6] every year, while
roughly 700,000 upper-limb hand amputees currently live in
the United States [7], [8]. Losing hand functionality poses a
great barrier for these individuals in a society designed for
humans with dexterous hands. This has a major detrimental
impact on their quality of life as they lose their capability
to perform numerous activities of daily living. To improve
the available rehabilitation and assistive technologies for
impaired individuals (e.g., hand prostheses and rehabilitative
exoskeletons), it appears necessary to deepen the understand-
ing of how humans control and move their hands.

Among the many research questions about the human
hand, there is growing interest in comprehending how hu-
mans seamlessly move a highly redundant system without
particular apparent effort. Santello et al. were the first to
suggest that kinematic synergies of the hand (i.e., linear
combinations of joint motions) could provide a reasonable
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reduction of dimensionality, decreasing the number of effec-
tive DOFs to be controlled [9]. Specifically, they observed
that most (> 80%) of the joint kinematic variance during
grasping could be described by only two synergies. Subse-
quent studies confirmed similar results [10], [11], [12], [13],
[14].

From a mathematical point of view, these researchers
approached the study of variance by means of matrix de-
composition techniques. Specifically, they took advantage
of Singular Value Decomposition (SVD) [15] and Princi-
pal Component Analysis (PCA) [16]. These methods allow
the decomposition of a non-square matrix - containing the
collected kinematic data of the hand - into singular vectors
(or principal components) and associated singular values (or
principal component scores) to investigate the distribution of
variance. However, pre-processing of the hand kinematic data
before performing the decomposition plays a crucial role. For
example, [9] centered each joint’s data around its mean value,
[12] considered two cases: joint data re-scaled to contain
values between 0 and 1, and joint data re-scaled to have unit
variance, while [14] used the raw data binned to fixed incre-
ments of time between start and end of a trial. These pre-
processing approaches led to similar conclusions in terms of
dimensionality reduction, but different quantitative estimates
of the effective amount of this reduction. While some have
explored how data structure affects synergy extraction [17],
[18] and others have investigated how electromyography
pre-processing changes the resultant muscle synergies [19],
to our knowledge no-one has explored how pre-processing
affects kinematic hand synergies.

In this work, we present an analysis of the effect of the
most common pre-processing techniques on the dimensional-
ity reduction problem. First, to provide intuitive understand-
ing of the effect of the different pre-processing methods,
we show a numerical example for a simulated 2 degree-of-
freedom (DOF) system. Then to validate the intuition gained
from the 2 DOF system, we apply the same approach to real
hand kinematic data obtained from a subject performing a
complex hand manipulation task: piano playing.

Studying piano playing has two intrinsic advantages. First,
it is widely recognized to be a complex manipulation task
[20] that requires specific training and years of practice [21].
Thus, it should exhibit a more refined distribution of variance
than a simpler task such as object grasping. Second, playing
piano requires limited range-of-motion trajectories of the
joints, thanks to the constraint imposed by the piano key-
board. Joint trajectories are generally curved, but over small
ranges of motion, a linear approximation may be satisfactory.20
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Therefore, piano playing is an ideal task to evaluate linear
mathematical tools such as Singular Value Decomposition.
Moreover, the current literature [10], [11], [12], [13], [14]
largely studies grasping of common household items, which
approximates a lower bound on the repertoire of the hands’
capabilities. However, if we want to restore activities of daily
living that involve manipulation it is important to specifically
study hand manipulation. Studying piano playing can help
approximate an upper bound on the hands’ capabilities.

The results presented in this study help to shed light on the
quantification - and correct interpretation - of the synergistic
behavior of the human hand. These results have implications
for the design of assistive and rehabilitative technologies.

II. METHODS

A. Theoretical Background

Consider a data matrix X ∈ Rn×m, where n represents
the number of observations (e.g., the time evolution of a joint
angle or degree of freedom) and m represents the number
of features (e.g., the number of analyzed DOFs) for a given
task. The main goal in the study of kinematic hand synergies
is to mathematically process i.e., decompose, the matrix
X to identify patterns (synergies) that could be related to
a reduction of the dimensionality of the control problem.
This is a proposed solution to the infamous “curse of
dimensionality,” which states that higher degree-of-freedom
systems are more difficult to control [22]. Dimensionality
reduction is often found via SVD.

In SVD, the matrix X is decomposed into the product of
an orthonormal matrix U , a matrix with values only on its
main diagonal S, and another orthonormal matrix V :

X = U · S · V T (1)

where U ∈ Rn×n, S ∈ Rn×m and V ∈ Rm×m. From a
geometric perspective, these operations could be interpreted
as the succession of a rotation U , a stretch S and another
rotation V T . Moreover, the principal diagonal elements of
S, also known as singular values σi, are related to the
eigenvalues λi of the square matrix XT ·X by the following
relationship: σ2

i = λi for i = 1, ...,m.
Mathematically, SVD provides information about the ma-

trix X’s distribution over the hyperspace Rn×m; of particular
interest is the data distribution over the feature space Rm.
The matrix V T can be used to obtain the principal directions
in the feature space, while the singular values - obtained from
S - return an estimate of the magnitude of variance projected
onto each principal direction.

To obtain a measure of the data variance-accounted-for
(VAF) by a given synergy, we used the singular values along
the principal diagonal of matrix S. Specifically, we report
VAF as a decimal, ranging from 0 to 1 obtained by dividing
the square of a singular value by the total sum of the squares
of the singular values: V AF (i) = σ2

i/
∑

σ2
i for i = 1, ...,m.

Pre-processing operations performed on the data matrix,
X , will, of course, affect the singular value decomposition
and the resultant estimation of the related VAF for a given

analyzed motion. The important question is how and how
much.

In the work presented here, we considered four different
pre-processing operations that have previously been used in
the literature for kinematic hand synergy decomposition: (1)
no pre-processing [14], (2) removing the mean [9], (3) z-
score [12], and (4) range 0-1 [12]. Mathematically, the latter
three approaches result in three new data matrices:

Xrm = X −mean(X) (2)

Xzs =
X −mean(X)

std(X)
(3)

Xr01 =
X −min(X)

max(X −min(X))
(4)

where Xrm represents a data matrix with the mean re-
moved, Xzs represents a z-scored data matrix, and Xr01

represents a data matrix scaled between 0 and 1. Excluding
trivial cases in which the data matrix features x(1 : n,m)
already have either zero mean, unit variance or a 0-1 range,
it is evident that the singular values and related orthogonal
directions vi ∈ V T will change due to pre-processing.

B. Numerical Validation

A set of numerical simulations was performed in Matlab
2022b (Mathworks, USA) to observe the changes in singular
value decomposition due to the different pre-processing
methods. To provide an intuitive understanding, a 2 DOF
system (m = 2) was considered to facilitate graphical
interpretation of the numerical simulations. The two DOFs
were linearly correlated with the addition of external noise:

x2(i) = k1x1(i) + k0 + ϵ(i) i = 1, ..., N (5)

where x1(t), x2(t) represent two features of the system,
k1, k0 are the linear correlation parameters between these
features, ϵ(t) is an external disturbance, and N represents the
number of simulated points. The results presented in Section
III-A used the following simulation parameters: k1 = 0.50,
k0 = 3, and N = 101. SVD was performed on the data
matrix X = [x1, x2] ∈ RN×2 and the results of all the
proposed pre-processing techniques.

C. Piano Playing

To validate the intuition provided by the numerical ex-
ample, a preliminary experimental validation on real human
hand kinematic data was performed with a single subject1 He
was informed about the experimental procedure and agreed
to sign a consent form. All procedures were approved by
MIT’s Institutional Review Board. performing a complex
manipulation task: playing the piano (Fig. 1). Piano playing
was selected due to its evident complexity and high level
of required skill. This was expected to address a common
weakness of synergy analysis via SVD: most of the data

1The subject was a 31 year old, right-handed skilled piano playing male
who had 10 years of trained piano practice and 20 years of overall piano
experience.
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Fig. 1: Experimental setup of one subject playing the piano
while kinematic data of their right hand was recorded with
a CyberGlove.

variance is ‘lumped’ into the first few synergies2, compro-
mising the reliability of numerical differences between the
higher-order synergies. Piano-playing was expected to evoke
a wider variability of the extracted synergies, thus avoiding
the effect of cumulative lumping of VAF into the first few
synergies. This would provide a better understanding of the
effect of different pre-processing methods.

The subject separately performed a set of 7 piano pieces
(Chopin: Nocturne Op. 9 No. 2; Chopin: Waltz Op. 64
No.1; Giovanni Allevi: Come Sei Veramente; Hans Zimmer:
Oogway Ascends; W.A. Mozart: Turkish March; Christopher
Norton: A Whimsy; Paul Desmond: Take Five) while wear-
ing a CyberGlove (CyberGlove; Virtual Technologies, Palo
Alto, CA), a glove with embedded sensors that measure joint
kinematics (Fig. 1). Specifically, the flexion of the distal
interphalangeal (DIP), proximal interphalangeal (PIP), and
metacarpophalangeal (MCP) joints of the four fingers were
measured. Additionally, the abduction (ABD) of the four
fingers at the MCP joints was measured. At the thumb, the
flexion at the MCP and interphalangeal (IP) joints, abduction
(ABD) at the carpometacarpal joint, and rotation (ROT)
about an axis passing through the trapeziometacarpal joint
were measured. Lastly, palm arch (PA) and wrist (W) pitch
and yaw were measured. The subject wore the CyberGlove
on his right hand. The CyberGlove collected samples at
∼ 200 Hz with a nominal angular resolution of < 0.1◦.

Synergies (i.e., linear combinations of the joint DOFs) and
their VAF were extracted using the SVD algorithm presented
above. To identify the number of significant synergies, we
followed the method of [18]. Specifically, we report the
number of synergies required to achieve at least 90% VAF
and where inclusion of another subsequent synergy did
not add an additional 5% VAF. To determine if there was
an effect of pre-processing on the number of significant
synergies, these values were submitted to a 4 (pre-processing
type) x 1 repeated-measures ANOVA.

Moreover, we compared the calculated kinematic hand
synergies, V , across pre-processing types. To do so, we

2Note, in the piano playing study the angles of the 23 joints of the hand
comprise the feature space. Thus, a reported synergy is a vector (hyperspace)
representing a common hand configuration which is described by angles of
the joints in the hand.

Fig. 2: Numerical validation data of the various pre-
processing types are shown by the light blue dots. Addition-
ally, the computed 1st and 2nd eigenvectors (i.e. synergies)
are shown by the red and blue lines, respectively. (a) denotes
the raw data while (b), (c) and (d) denote the data after the
pre-processing described by Eq. 2, 3, and 4, respectively.

computed the product of each individual piece’s synergies
identified by a pre-processing type with those of a different
pre-processing type:

C = |cos(θ)| = |V T
preprocessing1 · Vpreprocessing2| (6)

This resulted in a matrix consisting of the cosine similarities,
C(i, j), between synergies where i denotes the ith synergy
of pre-processing 1 and j denotes the jth synergy of pre-
processing 2. Here, we report the magnitude of these cosine
similarities, ranging from 0 to 1. If synergies were the same
irrespective of pre-processing (i.e. the data spans the same
hyperspace), we would expect a matrix of cosine similarities
with ones on the diagonal and zeros otherwise. In all other
cases (i.e. Vpreprocessing1 ̸= Vpreprocessing2), the resulting
matrix, C ∈ Rm×m, will be an asymmetric square matrix.

All data processing and statistical analyses were performed
using custom scripts in MATLAB. The significance level for
statistical tests was α = 0.05.

III. RESULTS

A. Numerical Validation

In Fig. 2 we present singular vector decomposition of
numerical data as described in Section II-B. There the raw
and pre-processed data can be seen. It is seen that in the
raw data case, the first eigenvector does not appropriately
represent the slope of the data (Fig. 2a).

The coefficients of the first and second eigenvectors are
shown in Fig 3a-b. Given that the slope of the data was 0.50
(i.e., k1 = 0.50), we expect the ratio of the coefficients of
the first eigenvector to equal ∼ 0.50 with some error due to
the added noise (i.e., V (2, 1)/V (1, 1) ∼ 0.50). The observed
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Fig. 3: Eigenvectors and VAF of the numerical validation
data. Different colors denote different pre-processing types.

X Xrm Xzs Xr01

Avg 2.29 6.14 9.00 1.14
SD 0.49 0.90 1.63 0.38

TABLE I: Number of significant synergies in the piano
playing study based on data pre-processing.

ratio was 1.177, 0.550, 1.000, and 0.952 in the raw, mean
removed, z-score, and range 0-1 data, respectively. Note, the
mean values of the raw data are 6.022 and 5.013; their ratio
is 1.201. Additionally, the mean values of the range 0-1 data
are 0.486 and 0.503; their ratio is 0.967. This indicates when
the data is not centered, the first synergy is directed towards
the mean of the data.

Fig 3c shows the VAF of each eigenvector. The VAF
of the first eigenvector was 0.995, 0.968, 0.957, and 0.989
in the raw, mean removed, z-score, and range 0-1 data,
respectively. Evidently, when the data was not pre-processed,
the second synergy was considered to negligibly contribute
to the variation of the data. While it may appear to be an
advantage to have a system adequately described by fewer
synergies, it is important to recall that in the raw data case
the first synergy was incorrect; rather than representing the
co-variation in the data it reflected the data mean.

B. Piano Playing

Fig. 4 demonstrates the VAF in the piano experiments
averaged across pieces for each pre-processing type. It is
seen that, on average, two synergies achieve 0.90 VAF when
data is not pre-processed or set to range from 0 to 1. However
when the data is removed of the mean or z-scored, 6 and 9
synergies (respectively) are needed to reach 0.90 VAF.

We quantified the number of significant synergies based
on each data pre-processing type. The average and standard
deviation is reported in Table I. A one-way ANOVA revealed
a significant effect of pre-processing on the number of
significant synergies (F3,24 = 94.47, p = 1.99e− 13). Post-
hoc t-tests (Bonferroni corrected α = 0.05/6 = 0.0083)
revealed that the range 0-1 data had a statistically fewer

Fig. 4: VAF of each synergy in the piano experiment
averaged across piece. Different colors denote different pre-
processing types. Lines show the cummulative sum of the
VAF. Errorbars are ±1SD. Due to space constraints, only
the first 10 synergies are shown.

Fig. 5: Comparison of synergies across different pre-
processing types for one representative piece. The matrix
of cosine similarities between synergies of different pre-
processing types is presented for the Chopin Waltz Op.
64 No. 1. A black value denotes a cosine similarity of 1
and a white value denotes a cosine similarity of 0. Due to
space constraints, comparisons of only the first 10 synergies,
ordered by decreasing VAF, are shown.
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number of significant synergies than the raw data (p =
3.67e− 04), data with the mean removed (p = 1.23e− 08),
and z-score data (p = 3.35e − 08). Moreover, the raw data
had a statistically fewer number of significant synergies than
the data with the mean removed (p = 3.70e − 10), and
z-score data (p = 2.28e − 07). Further, the data with the
mean removed had a statistically fewer number of significant
synergies than the z-score data (p = 0.0016).

To compare the synergies across pre-processing type,
we computed the magnitude of the similarity coefficients
between the matrices of synergies. The 6 comparisons, stem-
ming from the pairwise combinations of the 4 pre-processing
types (i.e.,

(
4
2

)
= 6), are reported in Fig. 5 for a representative

piece. If two types of pre-processing methods lead to similar
synergies we would observe a matrix of ones on the diagonal
and zeros otherwise. Clearly this is not the case. In fact, when
comparing the raw data synergies with the ones obtained
from removing the mean (Fig. 5a), we observe that there is
a large similarity in the subdiagonal of the matrix of cosine
similarities. High similarity is also seen in the superdiagonal
when we compare the z-score data synergies and the range
0-1 synergies (Fig. 5f). These relations were also observed
in the pieces not reported here.

IV. DISCUSSION
A. Effects of Centering the Data

The mean removed and z-scored data are centered while
the raw and the range 0-1 data are not. In Fig 3c, it is seen
that the first synergy of non-centered data has a greater VAF
than the centered data. This was also observed in the piano
study’s resultant synergies (Fig. 4). Due to the large first
synergy VAF, the non-centered data had statistically fewer
significant synergies than the centered data (Table I).

In the validation data, Fig 2a showed that the first eigen-
vector did not align well with the expected principal direction
of the data. Recall that the validation data was set up using
Eq. 5, where the slope, k1, was 0.50. Thus, we expected
the ratio of the coefficients of the first eigenvector (i.e.,
V (2, 1)/V (1, 1)) to be 0.50. This was not the case for the raw
data – V (2, 1)/V (1, 1) = 1.18. Fig 2a suggests that this first
synergy was used to reach the center of the data, resulting
in an eigenvector whose coefficients did not tell us how our
data co-varied. Moreover, this relationship was also observed
in the piano data. The cosine similarity matrix was computed
to compare synergies across pre-processing types (Fig. 5). If
the synergies were similar, we would have observed a matrix
of ones on the diagonal and zeros otherwise. Figure 5a shows
a matrix that contains high similarity on the subdiagonal
when comparing the raw data synergies to the ones obtained
from removing the mean. Given this in conjunction with the
observation made in Fig 2a, we hypothesize that the first
synergy in piano playing is similarly used to center the data,
while the subsequent synergies inform us how the joints of
the hand co-vary. Moreover in Fig. 5e, the cosine similarity
matrix between the z-score data synergies and the range 0-
1 data synergies has high similarity in the superdiagonal.
Again, the range 0-1 data is not centered, suggesting that the

first synergy centers the data, while the subsequent synergies
inform us how the joints of the hand co-vary. In sum, not
centering the data leads to a first-synergy dominated behavior
that is not representative of the principal directions of motion.

B. Effects of Changing Data Variance

The z-scored and range 0-1 data change the variance of
each DOF while the raw data and the data with the mean
removed do not. Specifically, z-scoring forces each DOF to
unit variance. As such, we are unable to determine how
much individual DOFs co-vary with one another. This is
represented by the eigenvectors of the data presented in
Sections II-B and III-A. We set up these data using Eq. 5,
where the slope, k1, was 0.50. Thus, we expected the ratio of
the coefficients of the first eigenvector (i.e., V (2, 1)/V (1, 1))
to be 0.50. In the z-scored and range 0-1 data this ratio was
1.00 and 0.95, respectively. Because the variance of the data
was changed, information about how joint motions changed
in relation to one another was lost. Thus, the ratio of the
first eigenvector coefficients was constrained to 1.00, due to
z-scoring, as opposed to the expected value of 0.50.

Applying this understanding to kinematic hand synergies,
we conclude that reducing the variance of the data would lead
us to a synergy that does not describe how one joint varies
with another, rather just that the two are related. For example,
let’s say x1 and x2 in Eq. 5 represent flexion/extension of
the index PIP and DIP. Z-scoring the data would result in
a synergy that whenever the PIP flexes (or extends) the
DIP also flexes (or extends) the same amount. However,
based on the data, this is not true; whenever the PIP flexes
(or extends), the DIP flexes (or extends) half that amount.
To conclude, changing the variance of the data during pre-
processing would result in a synergy that does not describe
how the several DOFs co-vary.

In this study, we do not have a physiological ground truth
of the synergies used in the piano playing task as we do
not have access to humans’ internal model. However, we
can derive a reasonable understanding of the dimensionality
reduction provided by the linear combinations of hand move-
ments using our knowledge of linear algebra and the intuition
provided by the numerical example in Section III-A. In sum,
not centering the data during pre-processing will result in a
dominant first synergy that aims to center the data (Fig. 2a
and 2d), leading to a greatly reduced significant number of
synergies. Moreover, changing the variance of the data during
pre-processing will lead to a synergy that demonstrates that
certain DOFs do, indeed, co-vary but it will not quantify
how much (i.e., the ratio between them). Thus, if you are
interested in conducting SVD to both accurately estimate the
number of significant synergies and how each DOF co-varies
with one another in a given synergy, you should center your
data but not change its variance. This is consistent with the
pre-processing step of removing the mean.

C. A Geometrical Understanding

Understanding that Singular Value Decomposition decom-
poses a data matrix, X , into a product of a rotation matrix,
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U , a (diagonal) stretch matrix, S and another rotation matrix,
V T provides insight into how pre-processing methods may
affect the decomposed synergies. Specifically, a pure rotation
of the data matrix, X , would lead to a pure rotation of the
eigenvectors. Moreover, a heterogeneous stretch of each DOF
in X will lead to heterogeneous changes of the eigenvalues,
resulting in different VAFs. In the z-score Xzs and range 0-1
Xr01, transformations presented here, each feature (i.e., joint
DOF) is separately scaled; that is a heterogeneous stretch.
Thus, the VAF of each feature will be accordingly altered.

D. Implications for Robotic Rehabilitation
The design of rehabilitative devices for the hand is still

in search of the best trade-off between number of actuated
DOFs, and device function, appearance, and comfort (e.g.,
minimized weight and size). In this scenario, prosthetic hand
designs that exploit fewer actuators to move multiple joints
represent a growing portion of the research prototypes [23],
[24], [25], [26]. Moreover, clinicians have used synergies as a
basis for rehabilitation post Cerebral Vascular Accident [27],
[28]. Thus, the understanding of how pre-processing affects
synergy decomposition presented here can better inform the
selection of the quantity and kinematic coupling of synergies
that assistive and prosthetic hand devices should implement.

V. CONCLUSION
This work investigated the role of data pre-processing on

the extraction of kinematic hand synergies. Using numerical
simulation and human hand kinematic data of a subject
performing playing the piano, we showed that removing
the mean appears to be the best approach to minimize
error in the interpretation of computed synergies and their
related VAF. This understanding may inform the design of
devices that replicate and rehabilitate the human hand. Future
work will aim to expand the study of shoulder, arm and
hand kinematics during piano playing to uncover the role of
synergy decomposition in this complex manipulation task.
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