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Abstract

Humans have an astonishing ability to extract hidden information from the movement of oth-

ers. In previous work, subjects observed the motion of a simulated stick-figure, two-link pla-

nar arm and estimated its stiffness. Fundamentally, stiffness is the relation between force

and displacement. Given that subjects were unable to physically interact with the simulated

arm, they were forced to make their estimates solely based on observed kinematic informa-

tion. Remarkably, subjects were able to correctly correlate their stiffness estimates with

changes in the simulated stiffness, despite the lack of force information. We hypothesized

that subjects were only able to do this because the controller used to produce the simulated

arm’s movement, composed of oscillatory motions driving mechanical impedances, resem-

bled the controller humans use to produce their own movement. However, it is still unknown

what motion features subjects used to estimate stiffness. Human motion exhibits systematic

velocity-curvature patterns, and it has previously been shown that these patterns play an

important role in perceiving and interpreting motion. Thus, we hypothesized that manipulat-

ing the velocity profile should affect subjects’ ability to estimate stiffness. To test this, we

changed the velocity profile of the simulated two-link planar arm while keeping the simulated

joint paths the same. Even with manipulated velocity signals, subjects were still able to esti-

mate changes in simulated joint stiffness. However, when subjects were shown the same

simulated path with different velocity profiles, they perceived motions that followed a veridi-

cal velocity profile to be less stiff than that of a non-veridical profile. These results suggest

that path information (displacement) predominates over temporal information (velocity)

when humans use visual observation to estimate stiffness.

Author summary

Stiffness of the arms or legs, the force evoked by displacement, plays an important role in

managing physical interaction with objects in the world. Measuring stiffness fundamen-

tally requires physical contact. Nevertheless, previous study showed that humans have a

remarkable ability to estimate stiffness solely from visual observation of a computer simu-

lation, with no physical contact. The present study extended that work and found that this
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ability was robust. In particular, the ability to estimate simulated stiffness was largely unaf-

fected by changing the time course of simulated motion. This was surprising given the

extensive prior research reporting that distorting velocity patterns influences motion per-

ception. The results presented in this paper indicate that geometric information (path)

predominates over temporal information (velocity) in the perception of stiffness. Given

the highly-cited relationship between motor action and perception, it also suggests that

the structure of the motor control system we used in the simulations is a reasonable

approximation of the neural motor controller. This work provides insight into humans’

representation of motor behavior and how humans interpret and learn from the motor

actions of others.

Introduction

When observing another human, we can only see their overt behavior (e.g., motion); we can-

not perceive the underlying neural signals that generate the behavior. Yet humans have an

astonishing ability to extract latent information from visually observing the movement of oth-

ers (for review, see [1]). This impressive ability has been best shown in a plethora of point light

animation studies, in which subjects were shown the motion of only a small subset of points

on the body. Even from such sparse motion information, humans can easily determine inten-

tion from arm movement [2], distinguish emotion from patterns in dancing [3], and identify

individuals from gait patterns [4]. In the context of motor learning, Mattar and Gribble [5]

showed that subjects who observed the motion of other humans reaching in an unseen force

field subsequently performed better when reaching in a similar unseen force field. That study

demonstrated humans’ ability to learn about novel force environments solely based on visual

observation of kinematics during physical interaction. As a whole, these studies demonstrate

that humans can determine latent information from visual observation of motion; extrapolat-

ing, it may be possible that humans can interpret underlying control signals used to generate

motion too.

Aligned with these results, in previous work we found that humans could infer dynamic

properties, specifically joint stiffness, from multi-joint limb motion [6,7]. In the prior study,

subjects observed the motion of a simulated stick-figure, two-link planar arm on a computer

screen and then estimated its stiffness on a numeric scale. To mimic aspects of human neuro-

motor control, the arm movement was driven by the superimposition of a hand-space

mechanical impedance controller and a joint-space mechanical impedance [8], where mechan-

ical impedance is characterized mathematically by the dynamic relation between motion and a

resultant force [9–11]. Results showed that subjects’ stiffness estimates positively correlated

with the joint stiffness values used in the control policy, indicating that they could estimate

changes in joint stiffness. Remarkably, this was possible without force information or explicit

knowledge of the underlying limb controller. It is impossible to unequivocally quantify fea-

tures such as limb stiffness from motion alone. Thus, humans must have used prior knowledge

to estimate latent information from visual observation of motion. To estimate limb stiffness,

for instance, their prior knowledge had to be congruent with the relation between limb stiff-

ness and motion produced by the control policy used to drive the simulated limb. However,

there are still open questions regarding the form of the prior knowledge used and how it was

acquired.

One possibility is that shared resources are used for action execution and action perception

[12–14]. The existence of mirror neurons—neurons in the premotor cortex that respond both
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when a subject performs an action and observes another person perform that same action—

supports this notion [15]. Behavioral studies showing that infants [16] and adults [17] learn

from observing and imitating the motor behavior of others also indicates a strong link between

action and perception. Importantly, this relation appears to be bi-directional [18] that is, both

transfer of knowledge from perception to action and from action to perception exists. Consid-

ering this relation, studying how humans perceive movement can inform how humans pro-

duce movement.

The possibility that humans used knowledge of their own neuromotor system to perform

the visual-perception-of-stiffness task suggests that the controller used to simulate the arm

motions was an adequate approximation of neuromotor control of upper limb movements. In

the previous experiments, the simulated arm movements were produced using a motor con-

troller built on dynamic primitives as proposed by Sternad and Hogan [8,19]. The authors pro-

posed that encoding behavior in terms of primitive actions can simplify the control of the

otherwise complex neuromuscular system. Specifically, the prior simulations were a composi-

tion of two mechanical impedances, one referenced to a nominal joint configuration, the other

referenced to an underlying oscillatory motion. Humans’ ability to estimate stiffness from

purely visual information indicates a relation between motor action and motor perception.

Moreover, it demonstrates that some of the ‘primitive’ elements believed to underlie motor

production (in this case stiffness) also figure prominently in sensory processing and

perception.

While the composition of motor behavior with dynamic primitives may serve as a compe-

tent model of motor generation and perception, how motor behavior is represented in the ner-

vous system remains an open question. Extensive research shows that parameters such as

motion and force are correlated with neural activity, but we have limited understanding of

how they are integrated to generate motor commands or interpret motor behavior (for review,

see [20]). Furthermore, there is evidence to show that aspects of mechanical impedance are

also correlated with neural activity [21]. However, it is unclear how, or even whether, mechani-

cal impedance is encoded in the nervous system. For instance, it is possible that the prior

knowledge subjects used to estimate stiffness in our previous work included other aspects of

mechanical impedance such as velocity-dependent force (damping). The goal of the study pre-

sented here was to further probe the prior knowledge humans use to estimate changes in limb

stiffness from visual observation. Specifically, we investigated the role of temporal information

in the visual perception of stiffness.

Highly regular patterns exist in the temporal aspects of human motor behavior. When

humans generate motion, it is commonly observed that their tangential hand velocity changes

logarithmically with the radius of curvature of its path, the so-called 1/3 power law (also com-

monly referred to as the 2/3 power law, depending on formulation) [22,23]. Furthermore,

removing this temporal pattern worsens motion perception. For instance, humans perceive

motions that follow the 1/3 power law to be more natural [24] and uniform [25]. They can also

anticipate the motion of a system more accurately when it follows the 1/3 power law [26].

Additionally, Dayan et al. [27] found stronger and more extensive neural responses, especially

in motor-related areas, when humans perceived motion that followed the 1/3 power-law com-

pared to motion that did not. Maurice et al. [28] also showed that humans can control physical

interaction with a robot better when its velocity profile follows the 1/3 power law. Moreover,

both velocity magnitude (i.e., speed) and direction are also well-correlated with the motor cor-

tical activity of the brain [29]. Thus, temporal information appears to play a key role in biologi-

cal motion perception and understanding.

Given the important role of temporal patterns in the generation and perception of human

motor behavior, we hypothesized that changing the velocity profile of the simulated arm
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without changing its path would hinder subjects’ ability to estimate limb stiffness from visual

observation. Conversely, if changing the velocity profile had no effect, it would suggest that

temporal information is at least subordinate to path information. Here, in Experiment 1, sub-

jects viewed simulated arm motions in which the joint paths varied with simulated stiffness as

determined by the dynamic simulation; however, the simulated velocity profiles were modified

in three different ways. Counter to our hypothesis, the presence and type of velocity manipula-

tion did not significantly affect subjects’ ability to estimate limb stiffness. Given these results,

we conducted a follow-up experiment to determine if temporal information had any influence

on the perception of stiffness. Thus, in Experiment 2, subjects observed simulated arm motions

that all followed the same joint path but with different velocity profiles. Subjects perceived sim-

ulations with a veridical velocity profile to be less stiff than that of a non-veridical velocity pro-

file; but there was no difference in subjects’ stiffness estimates of simulations that followed a

non-veridical velocity profile. Together, these results suggest that while temporal information

may influence humans’ stiffness perception, path information is the predominant factor used

by humans to visually estimate changes in limb stiffness. These observations provide further

insight into humans’ representation of motor behavior and how humans interpret and learn

from the motor actions of others.

Experiment 1

Methods

Ethics statement. A total of 30 subjects (15 males and 15 females with a mean age of

25.5 ± 5.6 years) took part in Experiment 1 (10 in each of the 3 experimental conditions). Sub-

jects had a variety of educational backgrounds, and none had any prior experience with the

experimental task. All subjects gave informed written consent before the experiment. The

experimental protocol was reviewed and approved by the Institutional Review Board of the

Massachusetts Institute of Technology (MIT IRB Protocol #1508154608). Data of an additional

10 subjects collected as part of a prior study (Experiment 2; [6]), referred to here as the original
condition, were used for comparison in the statistical analyses of Experiment 1 in the present

study.

Experimental protocol. In each trial, subjects were instructed to observe a stick-figure

display of a two-link planar arm move along a closed path for 20s and then estimate its stiffness

on a numeric scale from 1 (“least stiff”) to 7 (“most stiff”) (Fig 1). During this time, partici-

pants were not restricted from moving their body during the experiment, and they often mim-

icked the movement using their arm. Note that the endpoint path was not explicitly displayed.

After submitting their estimate, subjects self-initiated the next trial. S1 Video demonstrates

the display that subjects interacted with during these experiments.

Each subject performed 30 trials. Subjects were shown six unique arm motions, each of

which was simulated with a different value of elbow stiffness, repeated five times in a blocked

manner. The order was randomized within each block. After completing the experiment, sub-

jects were asked to provide a written description of their strategy for estimating “arm stiffness”.

The whole experiment lasted approximately 20 minutes.

A custom MATLAB program (The Mathworks, Natick, MA) was used to simulate and dis-

play the arm motions and to record subjects’ stiffness estimates. Participants sat approximately

20” in front of a laptop screen (12” w x 7” h) on which the arm motions were displayed. On the

screen, the length of each arm link was ~1”.

Simulated arm motions. The arm was modelled as a two-link planar manipulator moving

in a vertical plane and was driven with a controller comprising two attractors, inspired by the

proposal that human motor behavior is composed of dynamic primitives [8,19]. The first

PLOS COMPUTATIONAL BIOLOGY Visual perception of joint stiffness

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010729 November 28, 2022 4 / 27

https://doi.org/10.1371/journal.pcbi.1010729


attractor was a combination of an oscillatory primitive with mechanical impedance in end-

point coordinates, acting to pull the endpoint along a circular path, and the second was a com-

bination of a fixed-point primitive with mechanical impedance in joint coordinates, acting to

pull it to a nominal joint configuration.

The dynamics of this model were described as

MðqÞ€q þ Cðq; _qÞ _q þ gðqÞ ¼ t

where q; _q; €q 2 R2�1 are the joint angular positions, velocities, and accelerations, respectively,

M(q)2R2×2 is the inertia matrix, Cðq; _qÞ 2 R2�2 are the Coriolis and centrifugal terms, g(q)2

R2×1 are the gravitational terms, and τ2R2×1 are the controller joint torques. The length, mass,

center of mass, and moment of inertia parameters for the two links were chosen to match the

forearm and upper arm of an average, male human as described in [30]. The controller joint

torques τ were determined by

t ¼ JðqÞTKxðxr � xÞ � JðqÞTBx _x þ Kqðqr � qÞ

xr ¼
:1cos

20pt
3

� �

:1sin
20pt

3

� �

2

6
6
6
4

3

7
7
7
5
; qr ¼

p
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4
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7
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Fig 1. Set up for Experiments 1 and 2. In each trial, subjects were instructed to observe a stick-figure display of a two-

link planar arm move along a closed path for 20s and then estimate its stiffness on a numeric scale from 1 (“least stiff”)

to 7 (“most stiff”).

https://doi.org/10.1371/journal.pcbi.1010729.g001
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where x, _x 2 R2�1 were the endpoint (i.e., hand) positions and velocities, respectively, J(q)2

R2×2 was the Jacobian matrix, xr was the reference endpoint position, which followed a circular

path, qr was the reference joint configuration which was constant, Kx and Bx were the endpoint

stiffness and damping matrices, respectively, Kq was the joint stiffness matrix, and E2R�0 was

the value in the joint stiffness matrix corresponding to the elbow joint. The six unique arm

motions were generated by setting E = {0,10,20,30,40,50} Nm/rad (Fig 2). The range of elbow

stiffness values used was akin to those reported in human studies [31–33]. The dynamic simu-

lation of the arm used in this study was identical to that used in Experiment 2 of our previous

study [6].

While all subjects in Experiment 1 observed the arm move so that it followed the same six

endpoint paths (Fig 2), the velocity profiles along those paths varied across four experimental

conditions (Figs 3, S1 and S2). Subjects in the original condition saw the joints move with a

velocity profile governed by the aforementioned dynamic simulation. In the constant condi-
tion, the tangential velocity of the endpoint, υ, was set to a constant value of 0.185 m/s for all

six motions (Fig 4). In the inverse condition, tangential velocity varied as a power of the end-

point path’s radius of curvature R(t):

uðtÞ ¼ KRðtÞ� 1=3

where K was the velocity gain tuned to match the period of arm motions shown in the constant
condition (Fig 4). In the inverse condition, the speed of the endpoint increased with the curva-

ture of its path. Note that this is the inverse of the typical power law relation between speed

and curvature observed in human motor behavior (for review see [34]). The velocity manipu-

lations implemented in the constant and inverse conditions were chosen for this study because

they have been previously proven to affect both motion perception and production [27,28]. In

the variable condition, the relation between tangential velocity and radius of curvature changed

in each condition. The differential equation of the model dynamics was solved using the

ODE45 function in MATLAB to obtain a time vector at 1ms resolution. A new time vector

was generated to maintain constant tangential velocity for the endpoint path produced from

E = 50 Nm/rad (group 1). This newly generated time vector was used to generate the arm

motion with six different endpoint paths. The position vectors differed for each endpoint path,

but the time vector stayed the same. As a result, the relation between speed and curvature dif-

fered across endpoint paths and did not follow a power law (Fig 4). A video of the different

arm simulations subjects observed can be found in S2 Video.

While the period of arm motion increased slightly across the six motions displayed in the

constant and inverse conditions (from 3.33 to 3.68 seconds), it was constant in the original
(3.33s) and variable (3.68s) conditions.

Task instruction. We intentionally did not provide subjects with any details regarding the

underlying controller. Prior to the start of the experiment, subjects were not presented with

examples of “more” and “less” stiff arm motions. They also did not receive feedback regarding

the accuracy of their estimates at any point during the experiment. If a subject was unsure of

what the term stiffness meant, they received the following definition: “Stiffness is the extent to
which an object resists deformation or deflection in response to an applied force. A stiffer object
has higher resistance to deflections than a less stiff object.” In experiment 1, only 8 out of 30 sub-

jects requested and were provided with a definition of stiffness.
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x
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E =  0 Nm/rad   
E =  10 Nm/rad
E =  20 Nm/rad
E =  30 Nm/rad
E =  40 Nm/rad
E =  50 Nm/rad
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Self-reported strategy for stiffness estimation. After subjects had viewed all the simula-

tions, they were asked to write down their strategy for estimating stiffness. Subjects were not

told that they would have to self-report their strategy before the experiment to prevent poten-

tial interference of conscious strategies. Each subject’s response was manually codified with

four binary motion features of interest (joint motion, endpoint motion, path information, and

temporal information) to quantitatively assess what type of motion information subjects used

to estimate stiffness. The criteria used to set the value of each binary feature as either ‘yes’ or

‘no’ are presented in Table 1.

Fig 2. The six endpoint motions of the simulated arm in Experiment 1. Elbow stiffness (E) was varied. During the

experiments, subjects only saw the moving limb and were not shown the endpoint traces displayed here. The distance

between the centroids of the orbital endpoint paths, starting from E = 0 Nm/rad to E = 10 Nm/rad, were 0.24”, 0.15”,

0.09”, 0.05”, 0.03”, respectively, when measured on screen.

https://doi.org/10.1371/journal.pcbi.1010729.g002

Fig 3. (A) Simulated arm motions in Experiment 1. The simulated endpoint velocity profiles for each endpoint path across all conditions in Experiment 1 are

shown. In the original condition, the velocity profiles followed from the dynamic simulation. In the constant condition, the velocity profiles were manipulated to

be constant. In the inverse condition, the velocity profiles were manipulated to follow the inverse of the veridical power-law relation. In the variable condition,

the relation between tangential velocity and radius of curvature changed with each simulated stiffness; the velocity profiles did not have a simple velocity-

curvature power-law relation (see Fig 4). (B) Simulated arm motions in Experiment 2. In Experiment 2, the endpoint path (and simulated stiffness) remained

the same across the four different arm motions shown to participants, while the temporal pattern along the path differed. The endpoint path was generated with

E = 30 Nm/rad; the velocity profiles along the path were chosen from the four conditions in Experiment 1 and are referred to as original, constant, inverse, and

variable, accordingly.

https://doi.org/10.1371/journal.pcbi.1010729.g003
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Statistical analyses. To assess whether the estimates were similar across the four experi-

mental conditions, we conducted a 4 (condition) x 6 (joint stiffness) x 5 (block) analysis of var-

iance (ANOVA) of the arm stiffness estimate. ‘Condition’ was a between-subjects factor, and

‘joint stiffness’ and ‘block’ were within-subject factors. The Greenhouse-Geisser correction

was applied to the within-subject factors.

In addition, a linear model of stiffness estimate as a function of joint stiffness was fit to the

data for each subject. The coefficient of determination (R2) was calculated for each subject.

The R2 value represents the fraction of the overall variance of the dependent variable (i.e., stiff-

ness estimate) that can be accounted for by variability of the independent measure (i.e., simu-

lated joint stiffness). It served as a performance measure of each subject’s ability to estimate

changes in stiffness. R2 values closer to 1 indicated better fit of a linear model, and hence, better

performance. A one-way ANOVA of the R2 values with ‘condition’ as a between-subjects fac-

tor was conducted. This analysis tested whether the amount of unmodeled variability in sub-

jects’ stiffness estimates differed across experimental conditions. A one-way ANOVA of the

fitted slope values with ‘condition’ as a between-subjects factor was also conducted.
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Fig 4. The relation between radius of curvature (ROC) and tangential velocity (Tan Vel) for each endpoint path in the constant, inverse, and variable
conditions of Experiment 1. In the constant condition, this relation was constant for all endpoint paths. In the inverse condition, tangential velocity increased

with radius of curvature for all endpoint paths. In the constant and inverse conditions, the relation was the same for all endpoints path within each condition.

In the variable condition, this relation differed for each endpoint path. Specifically, the time vector generated to maintain constant tangential velocity for the

endpoint path produced from the E = 50 Nm/rad simulation (constant condition) was applied to all six different endpoint paths.

https://doi.org/10.1371/journal.pcbi.1010729.g004
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Binomial regression was conducted to assess the effect of experiment on the likelihood that

subjects reported using path information, temporal information, joint motion, and endpoint

motion to estimate stiffness. Linear regression was also conducted to further investigate

whether the reported use of the aforementioned motion features could predict subjects’ abili-

ties as quantified by the R2 values of the stiffness estimate linear fits. Data from the original con-
dition was not included in regression analyses since, in that experiment, subjects did not self-

report their strategy in writing.

In all statistical tests, the significance level was set to p = 0.05. Statistical analyses were per-

formed using SPSS Statistics for Windows, Version 24.0 (IBM Corporation, Armonk, NY).

Results

Effects of experimental condition and simulated joint stiffness on stiffness

estimate

A three-way ANOVA revealed a significant effect of simulated joint stiffness [F(1.64,59.184) =

85.22, p<0.001]. Across all experimental conditions, subjects increased their stiffness estimate

with the simulated joint stiffness used to generate the arm motion paths (Fig 5). However, the

remaining effects and interactions were not significant [condition: F(3,36) = 0.64, p = 0.59;

block: F(2.67,96.11) = 0.35, p = 0.77; simulated joint stiffness x block: F(11.40,410.36) = 1.21,

p = 0.28; simulated joint stiffness x condition: F(4.93,59.18) = 1.22, p = 0.31; block x condition:

F(8.01,96.11) = 0.22, p = 0.99; simulated joint stiffness x condition x block: F(34.20,410.36) =

0.95, p = 0.55].

Fig 6 shows each individual subject’s stiffness estimates for every motion path simulated

with a different joint stiffness value, along with the linear model fit to each subject’s data and

Table 1. Criteria used to encode the type of information subjects reported using to estimate stiffness in Experi-

ments 1 and 2.

Feature Value Criteria

Path Information ‘yes’ Use of the following words or phrases:

• “distance”

• “displacement”

• “range of motion”

• “angle”

‘no’ Did not meet criteria for a ‘yes’

Temporal

Information

‘yes’ Use of the following words:

• “speed”

• “rate”

• “acceleration”

• “jerk”

• “smooth”

‘no’ Did not meet criteria for a ‘yes’

Joint Motion ‘yes’ Use of the following words:

• “joint”

• “shoulder”

• “elbow”

• “angle”

Hand-drawn picture of the arm with a pointer to at least one of the joints

‘no’ Did not meet criteria for a ‘yes’

Endpoint Motion ‘yes’ Use of the words:

• “endpoint”

• “hand”

Hand-drawn picture of the arm with a pointer to the endpoint

‘no’ Did not meet criteria for a ‘yes’

https://doi.org/10.1371/journal.pcbi.1010729.t001
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the corresponding R2 value. The better the linear model fit, the better the subject’s ability to

estimate changes in stiffness. Subjects across all experiments varied in their ability to estimate

stiffness from motion, as indicated by the overall variation of R2 values (M = 0.55, SD = 0.25;

Fig 7A–7D). A one-way ANOVA revealed that there was no significant effect of condition on

the values [F(3,36) = 1.04, p = 0.39] (Fig 7E). A one-way ANOVA of the slopes of the linear fits

similarly revealed no significant effect of condition [F(3,36) = 0.90, p = 0.45] (Fig 8A–8E).

Across all experimental conditions, the average slope was 0.56 (SD = 0.33). These results indi-

cate that the speed profile of the arm motions had no statistically detectible influence on sub-

jects’ ability to estimate stiffness.

Effect of experimental condition on motion features used to estimate

stiffness

To further examine the motion features subjects used to estimate stiffness, analyses of the self-

reported strategies were conducted. As seen in Fig 9A, more subjects reported using path

information (N = 18) compared to temporal information (N = 8) to estimate stiffness, and
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more subjects reported using joint motion (N = 16) compared to endpoint motion (N = 2).

Most subjects (N = 10) reported using both path information and joint motion (Fig 9B). How-

ever, a similarly large number of subjects (N = 8) did not report using any of the four features.

Results of binomial regression found that experiment did not significantly affect the likeli-

hood that subjects reported using any of the four motion features [path information: χ2(2) =

0.84, p = 0.66; temporal information: χ2(2) = 2.62, p = 0.27; joint motion: χ2(2) = 1.08, p = 0.58;

endpoint motion: χ2(2) = 1.69, p = 0.43] (Fig 9B). Results of the linear regression also found

that none of the four motion features extracted from subjects were significant predictors of a

subject’s ability to estimate stiffness (i.e., R2 value) [F(4.29) = 1.90, p = 0.94] (Fig 9C).

Experiment 2

The results of Experiment 1 showed that manipulation of temporal patterns did not preclude

subjects’ ability to identify changes in simulated joint stiffness. It is still possible, however, that

temporal patterns influence the magnitude of humans’ stiffness estimates. Experiment 2

directly tested this possibility.

Methods

Subjects. Ten subjects took part in Experiment 2 (5 males and 5 females with a mean age

of 25.6 ± 1.7 years). As in Experiment 1, subjects had a variety of educational backgrounds,

and none had any prior experience with the experimental task. All subjects gave informed

written consent before the experiment. The experimental protocol was reviewed and approved

by the Institutional Review Board of the Massachusetts Institute of Technology.

Fig 6. Experiment 1 stiffness estimates for each individual subject. All the individual subjects’ stiffness estimates across simulated joint stiffness in all four

conditions. Larger dots indicate greater response frequency. The black lines represent a linear fit of each subject’s data. The coefficient of determination, R2, is

also reported.

https://doi.org/10.1371/journal.pcbi.1010729.g006
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https://doi.org/10.1371/journal.pcbi.1010729.g007
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Experimental protocol. The experimental protocol was identical to that of Experiment 1,

except that subjects in Experiment 2 were shown four different arm motions, repeated five

times in a blocked manner. Each subject performed 20 trials.

Simulated arm motions. The endpoint path (and simulated stiffness) remained the same

across the four different arm motions, while the temporal pattern along the path differed. As

shown in Fig 3B, the endpoint path was generated with an elbow stiffness of E = 30 Nm/rad;

the velocity profiles along the path were chosen from the four conditions in Experiment 1 and

are referred to as original, constant, inverse, and variable, accordingly.

Task instruction. Task instruction was the same as Experiment 1. In Experiment 2, three

subjects requested and were provided with a definition of stiffness.

Self-reported strategy for stiffness estimation. As in Experiment 1, after observing all

simulations, subjects were asked to write down their strategy for estimating stiffness. Again,

subjects were not told that they would have to self-report their strategy prior to the experiment.

The same criteria as before (Table 1) were used to codify subjects’ self-reported strategy.

Statistical analyses. To assess the effect of velocity profile on stiffness estimate, we con-

ducted a 4 (velocity profile) x 5 (block) ANOVA on the arm stiffness estimate. ‘Velocity profile’

and ‘block’ were within-subject factors. The Greenhouse-Geisser correction was applied to the

within-subject factors. Planned comparisons using paired t-tests were made to probe the

within-subject effect of ‘velocity profile’.

Results

Effects of velocity profile on stiffness estimate with the same endpoint path

A two-way ANOVA revealed a significant effect of velocity profile on stiffness estimate [F
(1.37,12.31) = 5, p = 0.029 (Fig 10). Paired tests revealed that stiffness estimates were
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significantly lower for original velocity profile compared to the three other velocity profiles

(ps<0.03. There was no statistical difference in stiffness estimate across the other three velocity

profiles (ps>0.18. The remaining effects and interactions were not significant [block: F
(2.50,22.53) = 1.08, p = 0.37; velocity profile x block: F(2.69,24.20) = 0.56, p = 0.63]. Fig 11

shows each individual subject’s stiffness estimates for each velocity profile.

Fig 9. Self-reported strategies in Experiment 1. (a) Histogram of motion features that subjects reported using to

estimate stiffness. (b) Stacked histogram of the sixteen possible motion feature combinations that subjects could have

reported using to estimate stiffness (p: path information, t: trajectory information, j: joint motion, e: endpoint motion).

A subject who reported using path information (p) and joint motion (j), but not trajectory information (t) and

endpoint motion (e), for example, would be counted under the combination ‘p+j’. (c) R2 values for each motion

feature combination that subjects reported using to estimate stiffness. Each circle represents an individual subject.

Color differentiates subjects based on the condition they participated in.

https://doi.org/10.1371/journal.pcbi.1010729.g009
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Self-reported stiffness estimating strategies

As in Experiment 2, subjects were asked to write down their strategy for estimating stiffness

after having viewed all the simulations. Contrary to the results of Experiment 1, in Experiment

2 more subjects reported using temporal information (N = 8) as opposed to path information

(N = 6) to estimate stiffness (Fig 12A). However, this was to be expected given that path infor-

mation did not change across motions in Experiment 2. Moreover, subjects in Experiment 2

rarely reported using either joint motion (N = 1) or endpoint motion (N = 1) (Fig 12A).

Rather, many subjects (40%) reported using both path and temporal information (Fig 12B).

Discussion

Given the observed relation between motor action and perception and the dependence of both

on velocity, we hypothesized that manipulating the velocity profile would hinder subjects’ abil-

ity to estimate stiffness. To test this hypothesis, we simulated arm motion with three new con-

ditions. In each condition, we distorted the velocity profiles of a simulated arm by

manipulating the velocity-curvature relation of its endpoint while keeping the paths the same.

In all conditions, we found that despite the manipulation of temporal information subjects still

increased their arm stiffness estimate with simulated elbow stiffness. Moreover, we did not

observe a statistically significant difference in subjects’ ability to estimate limb stiffness across

the experimental conditions, including the original condition with veridical velocity profiles.

These results emphasize the robustness of our prior finding that humans can estimate changes

in limb stiffness from visually observing its motion [6,7]. While the results of Experiment 1

demonstrated that manipulation of temporal patterns did not preclude subjects’ ability to

identify changes in simulated joint stiffness, Experiment 2 directly tested the possibility that

temporal patterns influence the magnitude of humans’ stiffness estimates. Specifically, subjects

observed 20 arm simulations that followed the same path (i.e., simulated stiffness), but had 4

different velocity profiles. Analysis demonstrated that subjects estimated simulations with the

original velocity profile to be significantly less stiff than simulations with a manipulated veloc-

ity profile. Given these results, we conclude that temporal information does influence visual

perception of stiffness. However, path information is the predominant factor used by humans

to visually estimate changes in limb stiffness. These results provide further insight into how

humans interpret and learn from the motor actions of others.
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Considerable research has shown that temporal information plays a key role in both the

generation and perception of biological motion. And yet, our results show that changing the

temporal patterns of the arm motion did not render subjects unable to estimate limb stiffness.

However, it is possible that the Likert scale used to quantify subjects’ stiffness estimates was

not sensitive enough to capture small differences across experiments. Discrete numeric scales

are vulnerable to quantization error, and the variance of quantization error is inversely propor-

tional to the number of estimate options (i.e., the lower the number of estimate options, the

higher the noise) [35]. Additionally, the Likert scale is susceptible to response bias, which

occurs whenever a person responds systematically on some basis other than what the items

were specifically designed to measure [36]. For instance, it is possible that subjects could have

different interpretations of the term “stiffness,” leading to increased variability in the strategies
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used for producing stiffness estimates. If subjects asked what the term “stiffness” meant, they

were given the following definition: “Stiffness is the extent to which an object resists deforma-

tion or deflection in response to an applied force. A stiffer object has higher resistance to

deflections than a less stiff object.” As mentioned earlier, only eleven subjects asked for and

were given this definition; However, omitting those subjects from the statistical analysis did

not change the significance (or lack of significance) of the results. It is important to emphasize

that if our definition of stiffness had been given to all participants, an assessment of whether

the instruction potentially biased participants’ performance could not have been made. This

motivated our decision to only provide an instruction if explicitly asked. Another common

form of response bias is central tendency bias, which occurs when subjects avoid selecting the

most extreme results. As seen in Fig 6, not all subjects used the full range of the Likert scale,

indicating that they were affected by such bias. Some subjects even explicitly reported looking

for the most and least stiff simulations; however, those simulations never came. Since central

tendency bias effectively reduces the number of estimate options, it further increases measure-

ment noise for a given subject. Nonetheless, we used the Likert scale to quantify subjects’ stiff-

ness estimates to allow comparison of our experimental results with those of our prior studies

[6,7]. Furthermore, despite the presence of measurement noise, the results show that the Likert

scale measurements were still fine enough to capture the effect of simulated joint stiffness on

stiffness estimate in Experiment 1. Moreover, it allowed us to determine the effect of velocity
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Fig 13. RMS of temporal motion features in Experiment 2. All 4 velocity profiles’ RMS of velocity (rad/s), acceleration (rad/s2), and jerk (rad/s3) for 1 cycle of

motion in (a) joint coordinates, and (b) endpoint coordinates.
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profile on the magnitude of subjects’ stiffness estimates in Experiment 2. We conclude that, if

the experimental procedure did affect subjects’ stiffness estimating ability, the effect was

minimal.

In Experiment 2, where subjects observed simulations of the same endpoint path produced

from the same simulated joint stiffness, subjects estimated the stiffness of the veridical velocity

profile to be less than that of the other three non-veridical velocity profiles. If subjects solely

used path information to estimate stiffness, we would expect subjects to have chosen the exact

same stiffness estimate. While one subject did exhibit this behavior (Fig 11), that was not the

trend for all subjects (Fig 10). Upon comparing Figs 10 and 13, it is seen that subjects’ stiffness

estimates may be related to the acceleration or jerk of the simulated motion. Thus, participants

possibly used one of these temporal metrics to estimate changes in stiffness, as the path-based

metrics typically used were not available. Consistent with these results, it has been shown that

minimizing mean-squared jerk yields the widely-observed 1/3 power law relation between

speed and curvature [22,23,37,38], and moreover motions that follow the 1/3 (veridical) power

law are perceived to be more natural [24] and uniform [25]. Here, subjects perceived these

more ‘natural’ and ‘uniform’ movements to be less stiff. Throughout the literature (for review

see [34]), it has often been shown that velocity encodes information about biological vs non-

biological motion. Given that minimizing jerk leads to a velocity profile commonly observed

in biological motion, subjects may have adopted this heuristic when estimating stiffness (Fig

13). As a result, subjects rated biological velocity profiles to be less stiff than non-biological

velocity profiles (Fig 10). While participants had an overall cognitive bias to estimate smoother

(i.e., less jerky), veridical motions as less stiff, this bias was likely not learned within the time

course of the experiment. There was no statistically significant effect of trial nor a statistically

significant interaction between trial and velocity profile on the stiffness ratings in Experiment

2. Ultimately, while this temporal information may have an effect on subjects’ ability to esti-

mate stiffness, it is still subordinate to path information.

Given that stiffness is the relationship between force and motion and no information

related to force was provided, participants must have used some set of path-based heuristics to

estimate changes in stiffness. It is important to emphasize, however, that we cannot claim what

path-based heuristic(s) participants used as there are a number of possibilities (e.g., endpoint

path oblongness, endpoint path area, endpoint path mean curvature, joint motion relative

phase, shoulder range of motion, or elbow range of motion) (Fig 14). Inherently, our findings

are consistent with the idea of attribute substitution [39]. Attribute substitution occurs when

people unconsciously make a judgement about a target attribute based on simpler and/or

more accessible substitute attributes [39]. The process of attribute substitution reflects the

assumptions or cognitive biases that an individual holds about the relation between the target

and substitute attribute(s). In our study, participants used some motion attribute(s) (substitute

attributes) to estimate changes in stiffness (target attribute). Here, Experiment 1 (Fig 5) dem-

onstrates that overall participants held a “correct” bias or assumption about how changes in

motion related to changes in joint stiffness; moreover, this bias was relatively consistent across

individuals (Fig 6). Importantly, this assumption of the relation between motion and stiffness

was unaffected by manipulations of temporal information. However, Experiment 2 shows that

participants still held a bias or assumption about how temporal attributes related to stiffness

when differences in path were not present. Thus, we conclude with the novel finding that

path-related attributes predominate over time-related attributes when humans estimate stiff-

ness. Future work will investigate what specific path-related attributes are used.

Subjects’ self-reported estimating strategies further support the finding that the use of path

information predominated over temporal information when subjects visually estimated

changes in limb stiffness. To estimate arm stiffness, in Experiment 1, more subjects reported

PLOS COMPUTATIONAL BIOLOGY Visual perception of joint stiffness

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010729 November 28, 2022 20 / 27

https://doi.org/10.1371/journal.pcbi.1010729


using motion features that contained path information than those that contained temporal

information. Moreover, velocity profile did not significantly influence whether subjects

reported using path or temporal information (Fig 9A). It is possible that subjects only chose to

ignore temporal information because it was not veridical. On the other hand, in Experiment 2,

subjects were forced to use temporal information as the simulated endpoint paths were indis-

tinguishable. Thus, contrary to Experiment 1 where few subjects (~23%) reported using tem-

poral information (Fig 9A), in Experiment 2 many subjects (80%) reported using temporal

information (Fig 12A). Interestingly, of the 30 subjects in Experiment 1, only 1 (~3%) reported

using the words “jerk” or “smooth”; however, 4 of the 10 subjects (40%) in Experiment 2,

reported using the words “jerk” or “smooth”. These results, together with Figs 10 and 13, sug-

gest it is likely that subjects did use temporal information to estimate stiffness when differences

in path information were removed. Even so, the fact that velocity profile manipulations did
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not hinder subjects’ ability to estimate stiffness in Experiment 1 indicates that the influence of

temporal information is at least subordinate to path information.

Many subjects reported strategies that did not clearly include any of the four motion fea-

tures (Fig 9B). Examples of such strategies reported interest in “flexibility of the object,” “rigid-

ity of the motion,” and “how constrained the object’s motion appeared”. To avoid codifying

subjects’ open-ended, written responses, we could have asked subjects to choose from a pre-

determined list of motion features. While this may have simplified the coding of their estimat-

ing strategies, it would have also increased the chances of response bias (e.g., choosing features

from the list for the sake of it). Moreover, Table 1 is not an exhaustive list of the motion heuris-

tics subjects could have used. Fig 14 highlights other path-based motion heuristics that were

related to the joint stiffnesses of the observed simulations. This study did not aim to determine

which path-based heuristics subjects used to estimate stiffness. Rather, we examined subjects’

use of path and temporal information; the features chosen in Table 1 helped us to do so. Fur-

thermore, it is also important to be mindful that no matter how subjects reported their estimat-

ing strategy, subjects could have reported features that they did not actually use (or omitted

reporting features they did use). An inability to clearly articulate what strategy they used could

also signal that estimating stiffness using solely observation of motion is an implicit process

rather than a conscious one. This could explain why the combination of reported motion fea-

tures did not affect the stiffness estimating performance (Fig 9C).

Nonetheless, the fact that subjects could successfully estimate changes in limb stiffness is

remarkable, and even more so is the fact that this ability is robust to manipulations of temporal

information (Experiment 1). The same limb motion can be generated with an infinite number

of stiffness values, making it fundamentally impossible to unambiguously estimate stiffness

from motion alone. This begs the question, how are humans able to estimate limb stiffness

from just the visual observation of motion? The results from individual subjects indicated that

they did not achieve task success by simply guessing how changes in motion related to changes

in stiffness. If they did, we would expect the relation between their stiffness estimates and the

simulated joint stiffness values to be significantly negative for some subjects. However, this

was not the case. While 3 out of 40 subjects, in Experiment 1, did have a negative slope in the

linear model fit to their estimating data, the corresponding R2 values were very low (<0.12)

(Fig 6). Excluding these subjects from the statistical analyses did not change the significance or

non-significance of any results. Moreover, calculation of the Pearson’s correlation coefficient

for each of these three subjects confirmed that there was no significant, linear correlation

between stiffness estimates and simulated joint stiffness (p>0.05). If these subjects did guess, it

was a fruitless strategy. Instead, subjects must have drawn on prior knowledge to successfully

perform the experimental task. Furthermore, that prior knowledge had a similar relation

between limb stiffness and motion as the one resulting from the control policy used to drive

the simulated limb.

Extensive evidence from behavioral and neuroimaging studies shows a strong coupling

between action generation and perception processes in the human nervous system [18,40–42].

Thus, one possible explanation is that subjects may have used implicit knowledge of their own

neuromotor control system to successfully estimate the changing stiffness of the simulated

arm. In fact, a study of adaptation to a force field during reaching by a proprioceptively deaf-

ferented patient found that an internal representation of limb dynamics could be updated by

visual information alone [43]. As mentioned previously, the controller used to drive the simu-

lated arm intentionally emulated aspects of human neuromotor control, based on the proposal

that motor actions are built from dynamic primitives using the compositionality of mechanical

impedance [8,19]. As described in this theoretical framework, composing motor actions from

motion primitives alone is insufficient. Inclusion of mechanical impedance, minimally defined
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as stiffness, is also required to control interaction or even the prospect of interaction. Studies

of kinematically constrained movements corroborate this notion [44,45]. For instance, an

oscillatory motion primitive combined with a mechanical impedance is a competent model of

human interaction control during crank-turning (i.e., moving with a circular kinematic con-

straint) [45] and during human-robot physical interaction [46]. This model offers a plausible

explanation of how humans manage physical interaction with their high degree of skeletal

redundancy [8,19]. Outside the domain of human motor control, this computational model

has proven to be an effective control strategy for kinematically redundant robots [47]. The fact

that subjects could estimate stiffness from observing motion alone further supports the role of

impedance in the generation of motor actions. Moreover, the fact that subjects could do this

without explicit knowledge of the underlying controller suggests that the internal representa-

tion used by humans to interpret the motion of others is consistent with the form of the

computational model proposed to describe the generation of motion. However, further

research is needed to determine the degree of congruency between subjects’ motion generation

and perception needed to perform this experimental task. Nevertheless, the importance of the

agreement between the simulated controller and subjects’ motor perception should not be

undervalued.

Whatever internal model or process was used to perform the task, regardless of its exact

form, it must have incorporated stiffness. The novel contribution of the study presented here

is that the representation of stiffness in this model is based primarily on path information. At

first blush, this appears to contradict the extensive evidence indicating the important role of

temporal patterns in biological motion perception. One feasible explanation for this apparent

discrepancy is that here, subjects were asked to judge a mechanical property of a simulated

arm, not anticipate or predict its kinematic behavior. Smoothness is a measure of predictabil-

ity, and prior work has shown that maximizing smoothness (i.e., minimizing mean-squared

jerk) yields a widely-observed power law relation between speed and curvature [22,23,37,38].

Hence, manipulating the temporal pattern of an object’s motion to eliminate the power law

relation between speed and curvature decreases its predictability. While this would likely affect

a human’s ability to track or anticipate the object, explaining the results of studies such as Kan-

del et al. [26] and Maurice et al. [28], it would not necessarily impair their judgement of

mechanical properties, especially if such estimations are made based on the geometric features

of movement.

Another plausible reason why distorting temporal patterns did not inhibit subjects’ ability

to estimate joint stiffness was the presence of multiple moving bodies. Here, subjects were pre-

sented with motion of a two-link arm, and more subjects reported using joint motion (N = 16)

rather than endpoint motion (N = 2). In prior studies where modulation of the speed-curva-

ture power law relation reportedly affected motion perception, subjects were only shown a sin-

gle moving body, or part of its trajectory, which is analogous to displaying only endpoint

motion [25–27]. It is possible that spatial structure may be prioritized over temporal structure

when multiple bodies are moving. For instance, using the point light animation paradigm with

a walking figure, Hirai and Hiraki [48] found that manipulation of spatial structure (i.e., ran-

domizing the start point of a particular point light, while keeping its velocity vector the same)

had a substantially greater effect on the brain’s response in the occipitotemporal regions, than

manipulation of the temporal structure (i.e., scrambling the frames in the point light

animation).

Ultimately, the fact that our results suggest that path information (i.e., geometry) is the pre-

dominant motion characteristic in humans’ internal representation of stiffness is consistent

with the foundation of mechanics. Only with the postulates of geometry derived by Euclid

could the likes of Newton, Lagrange, and Hamilton describe the motion of objects and deduce
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their own postulates regarding the forces that cause it (for review see [49]). Geometry is funda-

mental to mechanics. Therefore, it is reasonable that internal models used to interpret dynam-

ics during action perception are predominantly based on geometry.

Conclusion

To conclude, here we showed that humans can correctly infer changes in limb stiffness from

nontrivial changes in multi-joint limb motion. This result was robust despite manipulations of

the arm’s endpoint velocity profile. However, when path information was indistinguishable,

veridical velocity profiles were perceived as less stiff than non-veridical velocity profiles. While

other researchers have shown that manipulation of the velocity profile may hinder humans’

ability to anticipate kinematics, we show that it does not hinder humans’ ability to estimate

stiffness. These observations suggest that stiffness, or more generally mechanical impedance,

of the limb is encoded in an internal model used to perform this task. Moreover, these results

provide new insight into how humans interpret the motor actions of others and suggest that

path, not trajectory, information is more important to humans when estimating stiffness from

motion. This exploration of how humans extract latent features of neuromotor control from

kinematics provides new insight into how humans interpret the motor actions and interac-

tions of others.

Supporting information

S1 Video. Experiment’s graphical user interface. A video showing an example of the graphi-

cal user interface used to allow subjects to initiate a trial, observe a simulation, and rate its stiff-

ness.

(MP4)

S2 Video. Simulated arm motions. A video showing the 24 different arm simulations that

subjects saw in Experiments 1 and 2.

(MP4)

S1 Fig. Simulated arm tangential velocities. The simulated endpoint tangential velocities of

all 24 experimental paradigms (4 velocity conditions x 6 stiffness conditions) are shown. Each

plot shows a single cycle.

(EPS)

S2 Fig. (A) Simulated arm velocity magnitudes. The simulated endpoint velocity magni-

tudes of all 24 experimental paradigms (4 velocity conditions x 6 stiffness conditions) are

shown. Each plot shows a single cycle.

(EPS)
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