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Abstract—This paper presents the design and implementation
of a teleoperation scheme for a multi-finger robotic hand in
the Drake simulation environment using human demonstrations
captured by a single RGB camera. Specifically, teleoperation of
the Allegro Hand was implemented using a custom script to
obtain joint kinematics of the human hand via a software called
MediaPipe. Moreover, through the addition of kinematic hand
synergies in this pipeline, we were able to simplify the degrees
of freedom used to control the robotic hand. Currently, full
teleoperation is incomplete as we were unsuccessful in grasping
and manipulating different objects. In the future, we plan to not
only address this limitation but to also apply this teleoperation
pipeline to conduct behavior cloning of various manipulation
tasks based on human demonstration. Such research is important
for the design and control of anthropomorphic prosthetic hands.

Index Terms—Teleoperation, Robotic Manipulation, Dexterous
Manipulation, Synergies.

I. INTRODUCTION AND RELATED WORK

HANKS to the dexterity of our hands, humans have a

unique ability to manipulate objects and tools to navi-
gate the world around us. In robotics, multi-finger dexterous
manipulation has been an important, yet challenging topic.
Because of the many degrees of freedom (approximately 20) to
control, dynamics and contact modeling are significantly more
complex for a multi-finger robotic hand than for a traditional
two-finger gripper.

Despite these challenges, successfully achieving robust
multi-finger dexterous manipulation in a variety of scenarios
could significantly improve prosthetic design. A 2008 study
showed that approximately 700,000 Americans [ 1] have under-
gone amputation of their hand(s). With an expected increase
of diabetic patients, this number is predicted to double by
2050 [1]. Furthermore, amputees have been reported to prefer
the use of anthropomorphic prosthetic hands [2]. In a world
designed for dexterous humans, an effective, anthropomorphic
prosthetic device can markedly improve an amputee’s quality
of life [3].

One proposed solution to multi-finger dexterous manipu-
lation control is to learn from human demonstration [4]. A
teleoperation pipeline can be designed to collect this human-
based data; the design of such a pipeline is the topic of
this paper. Many of the state of the art hand-tracking and
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robotic teleoperation systems require full motion capture set
ups [5], [6] or specialized gloves [7]-[10]. Han et al. showed
impressive real-time hand tracking using motion capture, but
did not extend their study to conduct teleoperation [5]. Another
study tested subjects’ ability to teleoperate a robotic arm
via an optical motion capture system [0], but in general,
motion capture setups are expensive and can take up a lot
of physical space. Alternatively, specialized gloves like the
CyberGlove [7], reduce the physical footprint and are some of
the most accurate solutions to hand-tracking because resistive
bend-sensors can be attached to the hand directly. However,
these systems are still costly, and wearing the glove may
shift the behavior of the human subject from their normal
manipulation patterns. Furthermore, an off-the-shelf hand-
tracking glove does not fit all hands equally, and this misfit
may reduce its accuracy when collecting data from a variety
of subjects.

Addressing the aforementioned limitations and trade-offs,
vision-based hand-tracking has recently emerged as a promis-
ing method to inexpensively conduct human teleoperation
experiments. RGB cameras are ubiquitous today and can be
obtained at a low cost. For example, Ge et al. proposed a deep
neural networks-based method to capturing hand kinematic
data and showed outstanding results using a depth camera [ 1].
Although depth cameras may not be as expensive as motion
capture systems or specialized gloves, they are still less preva-
lent than RGB cameras. Meanwhile, MediaPipe Hands [12]
is a high-fidelity hand tracker that uses machine learning
to capture 21 points of interest on the human hand. Their
approach is effective, as it can achieve real-time tracking with
a mobile phone (as opposed to hefty desktop machines or
cloud clusters). Additionally, MediaPipe Hands is based on a
dataset of hands from all over the world, various age groups,
and in different lighting and background conditions, making it
suitable to most use cases. Finally, self-occlusions and partially
visible hands were a specific topic of interest for their team, so
MediaPipe Hands is relatively more robust to these common
pain points of vision-based hand tracking.

Applying vision-based tracking to robotic teleoperation,
Handa et al. successfully implemented an impressive teleop-
eration pipeline that succeeded in fine motor tasks such as
removing a bill from a wallet, albeit requiring a depth cam-
era [13]. Sivakumar et al. instead focused on enabling robots to
learn in the wild and emphasized the importance of creating
a low-cost solution that works in a variety of environments
and with inexperienced operators [14]. They were able to
successfully teleoperate using a single uncaliberated camera.
This paper has a similar approach, as we apply hand-tracking



with an uncalibrated RGB camera through MediaPipe Hands
to robotic teleoperation.

The ultimate goal of the multi-finger robotic teleoperation
pipeline proposed in this paper is to apply it to the learning
challenges of dexterous robotic manipulation. However, a
major challenge in the manipulation of multi-finger robotic
hands is the “curse of dimensionality” [15]. A human hand has
more than 20 degrees of freedom. The individual coordination
of each of those degrees of freedom makes the learning of
the control inputs for robotic manipulation complex. Drawing
upon the features of human biomechanics and sensory-motor
control may simplify this problem. By using synergies, a
coordinate-based dimensionality reduction, we can reduce the
degrees of freedom in the human hand. Santello et al. first
studied kinematic synergies of the human hand; they found
that two synergies accounted for more than 80% of the
variance in hand posture during grasping of a set of 57
imagined objects [16]. With this in mind, we postulate that
knowledge of human kinematic hand synergies can reduce the
learning requirements of dexterous hand manipulation. There-
fore, incorporating previously studied hand synergies in our
teleoperation pipeline will likely decrease the dimensionality
of the learning problem, in turn reducing the complexity of
the controller that needs to be learned.

With the future goal of enabling learning of the control
inputs necessary for robotic manipulation, we hypothesize that
a multi-finger robotic teleoperation system can be designed
with reduced degrees of freedom based on hand synergies. To
achieve this, we first aimed to create a simulation system in
Drake with the LBR iiwa robot, the Allegro Hand, and some
representative objects to manipulate. We then set out to inte-
grate the MediaPipe Hands architecture to control the Allegro
hand and simplify this control using previously proposed hand
synergies. The final performance goal of this project was to
grasp and manipulate the objects in the environment with the
above pipeline. Key results include:

o The Allegro Hand in the simulation environment was able
to be teleoperated via vision-based hand tracking, as it
could follow different hand poses that the operator made
with sufficient accuracy.

o Hand synergies were successfully applied to the teleop-
eration of the Allegro Hand, and multiple robot joints
were shown to move simultaneously when the operator
controlled one joint.

e The contact dynamics in the simulation environment
proved to be challenging, and grasping objects via tele-
operation was unsuccessful.

II. METHODS
A. Implementation of Teleoperation

1) Obtaining Hand Kinematics: One of the goals of this
project was to set up teleoperation of a simulated robotic
hand in a virtual environment. The first step in doing so was
obtaining a signal of human hand motion. This presented many
immediate challenges that are briefly discussed in Section IV.
We eventually settled on using MediaPipe to detect key points
on the hand. The MediaPipe pipeline consists of two models: a

palm detector, which provides a bounding box of a hand, and a
hand landmark model, which uses the bounding box from the
palm detector to predict the hand skeleton [12]. Specifically,
the hand landmark model measures 21 keypoints of the hand:
four at each finger (three at each joint and one at the tip) and
one at the bottom of the palm of the hand. This is shown in
Figure 1.

Having obtained the Cartesian coordinates of the hand, we
needed to convert them to the relative joint angles of the four
fingers as inputs to the controller. Thus, with the help of a
labmate, we created a custom script to do so. Specifically,
we defined the plane connecting the key points at the base
of the palm, the middle finger metacarpal (MCP) joint, and
the index finger MCP joint as our global xyz-coordinates.
The vector connecting the base of the palm and the mid-
dle finger MCP joint served as the +y-axis, and the vector
connecting the middle finger metacarpal MCP joint and the
index finger MCP joint served as the +x-axis. Furthermore, we
assumed that each forefinger has four rotational DOFs (degrees
of freedom): flexion/extension at the distal interphalangeal
(DIP), proximal interphalangeal (PIP), and MCP joints, and
abduction/adduction (ABD) at the MCP joints. Additionally,
the thumb had two rotational DOFs at the carpometacarpal
joint and a single DOF each at the MCP and interphalangeal
(IP) joints. Given the defined coordinate system and these
assumptions about joint motion, the 21 hand key points were
mapped to the 20 relative joint angles listed above.

2) Simulation Environment: Before implementing the tele-
operation, the simulated environment was set up in pyDrake.
Specifically, we used the iiwa robot with an Allegro Hand
as its end effector. Those can be pictured in Figure 2. The
iiwa has seven rotational DOFs while the Allegro Hand has
16 DOFs across four actuated fingers.

3) Contact Simulation of Objects in Scene: The simulation
environment was implemented to allow for objects of vari-
ous shapes and sizes, including spheres, boxes, and mustard
bottles, to be placed at arbitrary positions in the world. To
simulate contact dynamics, each object has a collision box

Fig. 1: Example of MediaPipe detecting 21 hand keypoints.



Fig. 2: 7-DOF iiwa Robot with 16-DOF Allegro Hand as its
end effector in the Drake simulation environment.

geometry occupying a volume slightly smaller than the visual
geometry defined for the object. Additionally, for box-shaped
objects, small collision spheres were placed on each corner to
supplement existing collision geometry and increase accuracy
when in contact with a flat plane.

These contact geometries, in conjunction with the contact
geometry on the surface and tips of the Allegro Hand, were
sufficient to simulate contact forces when grasping and ma-
nipulating objects.

4) Robot Inverse Dynamics Controller: With the mea-
sured joint angles of the joints of the hand and the simula-
tion environment setup, a controller for the robot hand and
arm were designed. To do so, we used Drake’s embedded
InverseDynamicsController function. This controller
takes the estimated and desired states as inputs, and outputs
control torques at each individual DOF. Mathematically, the
controller solves the following equations:

T = inverseDynamics(q, ¢, dcommand)

Geommand = kp(Qd - Q) + kd(Qd - Q) + ki /(Qd - Q) + Ga-

ey
where, the subscript d denotes the desired values. In our
simulation we used kp, kd, and ki gains of 20, 5, and 1
respectively. With this control formulation, we inputted the
desired positions and velocities for the iiwa and the Allegro
Hand separately.

We commanded the pose of the iiwa or the position of the
Allegro Hand end-effector using meshcat sliders !. Then, we
used Drake’s InverseKinematics function to solve for
the joint kinematics that satisfy the position and orientation

deally, we would like to have been able to map direct hand translations
and motions to the robot end-effector. However, without a depth camera this
was infeasible.

constraints defined by the desired end-effector position and
orientation. These joint kinematics could be used as the input
to the inverse dynamics controller.

To command the Allegro Hand, we mapped the hand joint
positions from MediaPipe and our custom code to the joint
positions of the Allegro Hand. However, because the Allegro
Hand’s kinematics are not exactly anthropomorphic and due
to limitations on the accuracy of the joint angle tracking from
MediaPipe, this task required some filtering and adjustment
to the joint angle inputs. The mapping from joint angles to
Allegro command angles is shown in Table I. Reordering the
joint angles using the table produced our position command
input to the Allegro Hand. Since the Allegro hand only has
four fingers, angles from the pinky were ignored.

B. Implementation of Kinematic Hand Synergies

The second goal of this project was to test the use of
synergies as a subspace to control the 16-DOF Allegro Hand.
In simulation we implemented synergy reconstruction under
five control conditions. The conditions specified the number of
DOFs the Allegro Hand had by projecting the human motion
into a synergistic subspace. The DOFs that we implemented
included: All Allegro DOF, 1 synergy, 2 synergies, 3 synergies,
4 synergies. The synergies were obtained from [17]. To project
hand motions into the synergy space, the following process
was followed:
1) Collect the hand joint kinematics via MediaPipe, qo €
RQO x 1

2) Find a least squares projection, A € R/ X ! to a subset
of known j synergy(s) V € R2? X J obtained from [17],
such that V' x A =~ qq.

3) Return the new hand motion projected into the synergy

space, go,syn = V X A.

With the new hand motions ¢qp, the Allegro Hand can be
controlled as described in Section II-A.

‘ Input Human Angle | Output Allegro Joint Angle

10 IABD
10

Inrep Inep

Iprp Iprp

Ipip Iprp
max(—2.4Tagp — 0.35,0) TroT
T TaABD
max(2.4Tycp,0) Tyvcp

Tip Tip
0 Mapp
Muyrep Mpyrcp
Mprp Mprp
Mpip Mpip
-6 Rapp
Ryep Rycep
Rprp Rprp
Rprp Rpip

TABLE I: A table mapping the human joint angles measured
from MediaPipe to the commanded joint angles of the Allegro
Robot. Some Allegro joints were set to constant values or
were scaled from the measured human joints. All values are
in radians.



C. Grasping in the Simulated Environment

Upon implementing synergies in the simulated hand con-
troller, we aimed to better understand how these synergies
may lead to better grasps. We designed an experiment where
subjects were tasked with grasping and lifting various objects
in the simulated environment. The objects of interest were: a
sphere with low (u = 0.2) and high (¢ = 0.8) friction, a cube
with low and high friction, and a mustard bottle.

In this experiment the iiwa was set to follow a specific
trajectory. Start above the object at 0.8m, go toward the object
at a sufficient height, stay there for several seconds, and raise
back up to the starting position. To obtain this trajectory, the
positions between the start and end poses were interpolated.
While the arm was held at a position immediately above the
object, the subject could attempt to grasp the object. Given
this trajectory in end-point Cartesian space, the robot motion
could be commanded as described in section II-A4.

The experiment had two dependent variables: grasp success
rate — where success is defined by the subject’s ability to
effectively grasp the object before the arm started moving
and (2) lift success rate — where success is defined by the
subject’s ability to effectively hold onto the object during the
entire duration the arm was moving.

III. RESULTS
A. Implementation of Teleoperation

As described in Section II-A, we were able to teleoperate the
Allegro Hand in Drake using a control input that found joint
kinematics from a custom script developed via MediaPipe.
This implementation worked very well, and some example
hand configurations are shown in Figure 3. The Allegro Hand
was able to imitate the peace sign, fist, and grasp closure of
the human hand.

Moreover, Figure 4 demonstrates the success of the
InverseKinematics solver used to find the joint kine-
matics required to achieve the specified endpoint position.
Specifically, the highlighted Meshcat slider in Figure 4 denotes
the vertical z-position of the Allegro Hand. As the z-value
was changed, the position of the hand in space changed
accordingly.

B. Teleoperation using Kinematic Hand Synergies

We were also able to successfully implement teleoperation
using Kinematic Hand Synergies as described in Section II-B.
This result is best shown in Figure 5. In the top subfigure,
we see the human teleoperating the hand using all 16 DOFs
prescribed to the Allegro Hand. In the case where there is
one synergy, the control input was projected into the subspace
prescribed by one synergy. That is, all the joints were moving
in a coupled manner simultaneously. As we increased the
number of synergies in the controller, the Allegro Hand began
to look more like the peace sign in the top part of the figure.
Notably, the first synergy is often akin to a power grasp (i.e.
closure of the hand, for example when holding a water bottle.);
thus, in the case where we are reconstructing a peace sign with
the first synergy, the robot’s hand pose resembles a power

grasp.

Fig. 3: Example of human (left) teleoperation of the Allegro
Hand (Right). (a) A peace sign. (b) A fist. (c) Grasp closure
of a cube.

Fig. 4: Example of teleoperation of the iiwa arm using Meshcat
Sliders to specify endpoint position. The highlighted Meshcat
slider denotes the vertical z position of the Allegro Hand;
as this value was changed, the position of the hand in space
changed accordingly.



Fig. 5: Example of human (left) teleoperation of the Allegro
Hand (right) using varying levels of synergies in the controller.

When we added the subspace described by the second
synergy, more individuation of the thumb motion could be
observed. This is because the second synergy is akin to a
pinch grasp, where the thumb, index, and middle finger come
together (for example, when holding a pencil). In the peace
sign, while the thumb is rotated inwards, the middle and index
fingers were extended. Thus, the reconstruction of the peace
sign using two synergies had more outward thumb rotation and
index and middle finger extension than the reconstruction of
the peace sign using one synergy. It is evident that when fewer
DOFs are employed (by coupling the motion using synergies),
our ability to reconstruct the hand motion suffers. However,
when grasping an object, synergies reduce the complexity of
the grasp. Coupling this strategy with hand compliance may
lead to finding stable grasps more easily.

C. Teleoperation to Grasp Various Objects

As described in Section II-C, we aimed to test the hypoth-
esis that various objects in the simulated environment can
be grasped using a subset of synergies. Unfortunately, our
teleoperation method of using a standard RGB camera to track
hand motion was not sensitive enough to recreate stable grasps
around the objects we tested. In particular, controlling the
Allegro Hand such that its fingers enclosed around an object to
form an antipodal grasp with all four fingers was challenging.
Furthermore, the lack of force feedback from teleoperation
made it difficult to determine when sufficient force was applied
to grip an object. The robot’s motions were often exaggerated
to compensate for these limitations, leading to our simulation
becoming unstable (and our test objects flying away) when
excessive force was applied from the Allegro Hand. This
behavior is depicted in Figure 6; as the hand closes around
the cube, the forces caused the cube to accelerate away and
the Allegro Hand to diverge from the prescribed kinematics
by the human operator.

IV. DISCUSSION

This project set out to build a teleoperation pipeline that can
ultimately be used to provide a basis for conducting behavior
cloning on various manipulation tasks. We aimed to explore
how using kinematic hand synergies could be employed to
reduce the DOFs required to produce stable grasps in an
anthropomorphic gripper. Specifically, our project was divided
into 3 sub-tasks:

1) Teleoperate the Allegro Hand.

2) Teleoperate the Allegro Hand using known kinematic
hand synergies.

3) Grasp various objects in simulation using teleoperation
of the Allegro Hand.

We were able to successfully implement the first two tasks,
but we were unfortunately unable to implement the third task.

Before using MediaPipe to extract human hand kinematics,
we aimed to use the CyberGlove [7]. Unfortunately, Cy-
berGlove only runs on Windows 10 while Drake only runs
on Mac and Linux. Before abandoning the CyberGlove, we
considered running the project in C++ using MuJoCo [18] as
our simulation software. However, shortly after continuing the
project in that direction, we realized that without Drake, we
would not be able to use the class’ resources (i.e., the professor
and TAs) for help with debugging. Thus, we finally settled on
exploring vision-based hand key point detection alternatives,
which led us to MediaPipe.

Using MediaPipe, key points of the human hand were
extracted and a custom script was written to turn those key
points into joint kinematics. The joint kinematics from the
human hand were used to control the joints of the Allegro
Hand (Table I) via an inverse dynamics controller. Often
times in prosthetic design, a similar controller is implemented.
Specifically, some desired motion trajectory of the hand is
extracted from the user and is used as the desired controller
trajectory. However, to be consistent with the hypothesis of
human motor control (which is hypothesized to lead to easier
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Fig. 6: Allegro Hand contact with the cube created an unstable
simulation. As the hand closes around the cube, once the cube
was touched, the cube accelerated away and the Allegro Hand
no longer followed the prescribed human kinematics.

control for the user) [19], [20], we would have liked to imple-
ment Drake’s JointStiffnessController function. It
implements a controller,

Tcommand = —Tg — Tapplied + kp(qd - q) + kd((ld - C]) (2)

where 7, and T4pp1ieq are the torques due to gravity and exter-
nal forces respectively. There are key differences between the
inverse dynamics controller and the joint stiffness controller.
The inverse dynamics controller compensates for error with
an integral term that predicts the next state. This can lead to
instabilities during sudden dynamic changes. Meanwhile, the
joint stiffness controller estimates measures of perturbations
via the torques due to gravity and external forces. This
formulation removes the need for an integral term, as direct
force feedback can does not necessitate estimating the next
state. In this work, we did not use Drake’s joint stiffness
controller because it was extremely sensitive to the time step
value. Reducing the time step to avoid instabilities resulted in

not being able to use MediaPipe to control the Allegro Hand
in real-time. Thus, we continued with the inverse dynamics
controller.

With this set up, we incorporated teleoperation via kine-
matic hand synergies (Task 2). The implementation is shown
in 5. When less DOFs were employed (by coupling the
motion using synergies), reconstructing the hand motions
suffers. However, synergies reduce the complexity of the grasp,
and coupled with hand compliance, it may lead to finding
stable grasps more easily. This understanding can be useful in
prosthetic hand design.

Since amputees prefer the use of prosthetic hands that
look and function like biological hands [2], the study of the
manipulation of dexterous robotic hands is essential. Previous
work on using synergies in robotic hands suggests that the
control of anthropomorphic hands can be simplified using
synergies [21]. As synergies decrease the DOFs in the hand,
it also decreases the number of actuators required to control
the hand. In turn, this reduces the cost, size, and weight of the
prosthetic device. Unfortunately, conducting tests on hardware
devices can be time-consuming and limiting. We foresee that
our proposed teleoperation pipeline using synergies may aid in
testing the control of multi-finger robotic hands in simulation.

In addition, although a simple gripper can achieve many
tasks reliably as we have seen in class, the identification
of colinear antipodal grasp points is important for a two-
finger gripper to have a large contact wrench cone [22]. For
example, when grasping a rigid sphere, without finding the
colinear antipodal grasp, the gripper may slip off. On the other
hand, a compliant multi-finger hand may be able to engulf the
sphere with multiple contact points. At each contact point, the
compliance of the fingers may help to form the hand around
the object. In fact, Bicchi et al. found that an anthropomorphic
hand controlled with just one synergy can often obtain a stable
grasp due to this embedded controller compliance [23].

Unfortunately, we were unable to implement the task of
grasping various objects in simulation using teleoperation of
the Allegro Hand. Thus, we were unable to conduct the ex-
periment outlined in Section II-C. Our teleoperation methods
failed to reliably produce suitable grasps around our test
objects, and the lack of force feedback made it difficult to
determine when sufficient grip was achieved. As shown in
Figure 6, excessive forces on our test objects and our end-
effector led the simulation to become unstable. It is possible
that these large forces were due to our use of the inverse
dynamics controller. When the hand comes into contact with
the box, the hand undergoes an instantaneous change in contact
dynamics. This sudden change in contact force greatly affects
the integral term in the controller. This behavior may lead to
large torques in the control input leading to instabilities in the
simulation. We hypothesize that with sufficient external force
feedback coupled with a joint stiffness controller, we may not
have these problems. Exploring this idea is a topic of future
work.

In developing this project, the authors learned a great deal
about common control concepts in manipulation, as well as the
implementation of these concepts in Drake. Creating a working
system that combined an inverse dynamics controller with an



inverse kinematics solver for a robot with 23 state variables,
while adding in arbitrary objects to manipulate and test with,
involved extensive research on programming with Drake, to
the level of examining the source code for utilities found in the
course textbook. Connecting our inverse dynamics controller
with the inverse kinematics solver gave us experience with the
benefits and drawbacks of both approaches, which helped us
shape our programmatic and meshcat graphical interfaces to
give feedback when either of these systems failed. Integrating
external inputs in the form of hand joint angles from a camera,
and adding objects separate from the robot but which still
affected the simulation state, required making full use of the
input and output connections between subsystems defined in
Drake, cementing our knowledge of this platform.

We designed this teleoperation pipeline with the ultimate
goal of applying it to learn the controller for dexterous
robotic manipulation. Recently, the works of [4] and [24] have
shown that human demonstrations can be used for imitation
learning to complete various manipulation tasks. Using the
collected demonstrations in simulation, their work augments
the reinforcement learning objective to achieve robust results
in real robots. With our work on teleoperation using synergies,
we would like to further simplify this learning problem in
the future. From the given data in teleoperation, we can
extract the specific kinematic synergies in joint space used
in this task [25]. Moreover, rather than tackling this problem
using a reinforcement learning approach, behavior cloning
— a method by which human subcognitive skills can be
captured and reproduced in a computer program [26] — may
be employed. In future work we plan to leverage behavior
cloning as a form of supervised learning that will allow the
mapping of synergistic inputs to an output torque on a cube.

V. CONCLUSION

Through this project, we have designed and implemented
the teleoperation scheme for a multi-finger robotic hand in the
Drake environment using human demonstrations captured by
a single RGB camera. Through the addition of kinematic hand
synergies in this pipeline, we aimed to simplify the degrees
of freedom used to control the robotic hand. Although we
were able to teleoperate the Allegro Hand using synergies,
we were unsuccessful in grasping and manipulating different
objects with the same pipeline. A limitation in the current
design is our use of the inverse dynamics controller on
the Allegro hand. When the hand comes into contact with
an object, the instantaneous change in dynamics induced
instabilities in the simulation environment. In the future, we
plan to not only address this limitation but to also apply
this teleoperation pipeline to conduct behavior cloning of
various manipulation tasks based on human demonstration.
This work can be further applied to the design and control
of anthropomorphic prosthetic hands. Finally, in simulating
this teleoperation environment in Drake, each of us gained
valuable experience in building a simulation environment,
implementing different control mechanisms, and integrating
the simulation with other pipelines, such as MediaPipe.
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