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Abstract—Stroke often causes sensorimotor deficits, impair-
ing hand dexterity and disrupting independence for millions
worldwide. While rehabilitation devices leveraging visual and
haptic feedback show promise, their effectiveness is limited
by a lack of perceptual equity, which is necessary to ensure
fair comparisons between sensory modalities. This study refines
cross-modal matching protocols to address this gap, enabling
unbiased evaluation of multimodal feedback. Using the Hand
Articulation and Neurotraining Device (HAND), 12 healthy
participants matched visual and haptic stimuli in a structured
task. A streamlined protocol, requiring just 2-3 blocks and 3
reference intensities, reduced experimental time fivefold while
preserving data integrity. Data were analyzed using linear and
exponential models applied to both full and reduced datasets. The
results demonstrated consistent participant performance across
trials, with higher matching errors at greater stimulus intensities,
likely attributable to sensory saturation effects. Furthermore, the
study offered practical methodological insights, including the use
of reduced data sampling paradigms to enhance experimental
efficiency significantly while preserving data integrity. This work
advances perceptual equity in multisensory feedback systems,
addressing sensory encoding variability to support scalable,
personalized therapeutic strategies for stroke recovery.

Index Terms—Cross-modal Matching, Perception, Haptic
Feedback, Vibrotactile Feedback, Dexterity, Rehabilitation

I. INTRODUCTION

The human hand is fundamental to performing essential ac-
tivities of daily living, such as grasping, manipulating objects,
and executing precise movements. However, hand dexterity
is often compromised by neurological conditions like stroke,
which impacts over 12.2 million individuals globally each
year [1]. The loss of hand functionality not only reduces
independence and quality of life but also places significant
physical, emotional, and economic burdens on individuals [2].

Efforts to address this challenge have driven the develop-
ment of innovative strategies to restore hand dexterity post-
stroke. Among these approaches, hand rehabilitation devices
have shown significant promise by leveraging advancements in
robotics, neurorehabilitation, and haptic feedback to promote
motor recovery and neural plasticity [3], [4]. Despite these
advances, challenges remain in ensuring the accessibility,
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personalization, and effectiveness of these devices to meet the
diverse needs of stroke patients [5].

The Hand Articulation and Neurotraining Device (HAND)
was co-developed by Carducci, Xu, and their collaborators [6],
[7] to explore individuated finger control and multidimensional
co-activation patterns following stroke. Here, we focus on
adapting the HAND to study the pinch grasp, a critical fine
motor skill required for handling delicate or brittle objects.
Pinch grip deficits, often observed in stroke patients, are
linked to impairments in sensorimotor processing pathways.
These deficits result in diminished tactile and proprioceptive
feedback, reducing the ability to accurately modulate grip
forces and perform everyday tasks independently [8].

While many existing rehabilitation devices rely heavily
on visual feedback for training and recovery [9], evidence
suggests that visual feedback alone is insufficient to optimize
motor recovery outcomes [10]. Recent studies highlight the
potential of integrating multisensory feedback, particularly
haptic cues, to promote neural plasticity and enhance func-
tional motor rehabilitation [11]. In this work, we aim to un-
derstand how multisensory feedback should best be provided
in the HAND by utilizing visual and haptic cues to augment
somatosensory pathways. By addressing these gaps, this study
contributes to advancing therapeutic strategies and optimizing
neurorehabilitation outcomes for stroke patients.

Sensory and motor deficits arising from stroke manifest in
diverse and highly individualized ways, resulting in variations
in how stimuli are perceived across individuals [10]. To
effectively leverage multisensory feedback in rehabilitation, it
is crucial for sensorimotor tasks to account for such variability
and ensure fairness across modalities. Establishing perceptual
equity — ensuring that any observed differences in performance
between visual and haptic feedback reflect true differences
in sensory encoding rather than biases introduced by the
experimental setup — is essential for accurately comparing
the efficacy of these modalities in healthy participants. This
process, known as cross-modal matching, involves calibrating
sensory intensities to establish a balance between modalities,
enabling fair and unbiased comparisons [12], [13].

Cross-modal matching provides a standardized framework
to evaluate the encoding and integration of sensory information
across modalities, ensuring perceptual equity by aligning stim-
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Fig. 1. A modified Hand Articulation and Neurotraining Device (HAND) [6], [7] setup used in this study. (a) Participants interact with the device by placing
their fingers in silicone cups mounted on an aluminum frame, with vibrating voice coils providing mechanical haptic stimuli. (b) The virtual task includes
a variable-brightness sphere for visual feedback and two user interfaces: the exploration phase, where reference sliders are present, and the matching phase,
where no reference sliders are displayed. (c) Wearing noise-canceling headphones, participants use a limitless keyboard dial to adjust the intensity of the
presented feedback. Feedback is either haptic — delivered through the HAND or visual — rendered within a virtual task.

ulus intensities. This process is crucial for isolating genuine
differences in sensory encoding from biases introduced by
experimental setups. However, it can be time-consuming and
variable across individuals, which poses a significant chal-
lenge, particularly for stroke patients who often experience
fatigue during extended tasks [14]. To address these issues,
one of the critical aims of this study is to develop pre-
experiment cross-modal matching protocols that streamline the
process, minimize fatigue, and maintain accuracy. We believe
the guidelines derived from this study with healthy individ-
uals will provide a foundational framework for developing
efficient, reliable methods in neurorehabilitation research with
stroke patients, seamlessly integrating with existing clinical
techniques.

II. METHODS AND IMPLEMENTATION
A. Farticipants

We evaluated the ability of N=12 individuals with no
history of stroke or upper-extremity disabilities (5 males and
7 females; mean age: 25.2£6.1 years; 9 right-handed, 1 left-
handed, and 2 ambidextrous) to match the intensity of one
feedback modality to an equivalent intensity of another using
a custom rehabilitation interface under two distinct feedback
conditions. Each participant’s handedness was assessed using
the Laterality Quotient derived from the administered Ed-
inburgh Handedness Inventory after obtaining their consent
[15]. The experiment lasted approximately 60 minutes, and
participants were compensated at a rate of $10 per hour. All
participants provided informed consent in accordance with a
protocol approved by the Johns Hopkins School of Medicine
Institutional Review Board (Study #IRB00209185).

B. Experimental Setup

The study utilized a modified Hand Articulation and Neu-
rotraining Device (HAND) built and validated in prior studies
[6], [7]. The HAND includes two silicone cups mounted on
an aluminum frame, precisely positioned to naturally align
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with each participant’s index finger and thumb, allowing for a
customized and comfortable fit as shown in Fig. 1(a). The
device is set up for the participants’ right hand, and all
participants, regardless of handedness, use the same config-
uration. Each cup is mechanically coupled with a Dayton
Audio DAEX13CT-8 Sound Voice Coil, which provides the
vibrotactile haptic feedback necessary for the tasks.

The voice coils are driven through a custom amplifier
board controlled by a 600 MHz Teensy 4.0 microcontroller.
This microcontroller communicates with the primary control
software, a Python script running on the computer via a serial
interface. The virtual task program transmits 9-bit values to the
Teensy, which adjusts the intensity of the voice coil output.
Upon receiving these values, the microcontroller employs a
MAXS521BCPP digital-to-analog converter (Maxim Integrated)
and a TPA3122D2 Class-D audio power amplifier (Texas
Instruments) to generate 250 Hz sine waves with a variable
peak-to-peak voltage range of O to 7 V. These signals drive
the voice coils, delivering haptic stimuli to participants.

The virtual task consists of a 3D environment featuring
a centrally positioned, fixed-size gray sphere illuminated by
a distant light source, as shown in Fig. 1(b). The sphere’s
brightness is adjusted to provide visual stimuli, matching the
9-bit resolution used for the haptic stimuli generated by the
voice coils. The virtual environment is created in Python 3.6
and rendered using Panda3D Open Source Framework.

C. Cross-modal Matching Implementation

To ensure fairness and perceptual equity in neurorehabil-
itation experiments, cross-modal matching is essential for
calibrating stimulus intensities across modalities, ensuring
that observed differences reflect genuine sensory encoding
rather than experimental bias. Building on this principle,
we implemented a cross-modal matching task based on the
paradigm developed by Pitts et al. [12], [13], constructing
participant-specific psychometric curves to align haptic and
visual stimulus intensities. The participants were instructed to
sit in front of a monitor running the virtual task and rest their
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right hand comfortably on the HAND as shown in Fig.1(c).
Participants wore noise-canceling headphones that played 60
Hz white noise at a comfortable volume to eliminate potential
auditory interference from the voice coils. The experiment was
broken into two phases.

1) Intensity Exploration: In the first phase, participants
used a graphical user interface (GUI) to explore the full range
of vibrotactile and visual stimulus intensities for two minutes.
The stimuli were presented continuously, with their intensities
adjustable via a limitless dial on an XPPen ACKOS5 wireless
shortcut keyboard (XPPen, China) as shown in Fig. 1(c).
Two sliders on the screen indicated stimulus intensity being
presented in real time. A clockwise click on the dial increased
the intensity, while a counterclockwise click decreased it by
1 unit within a range of 0 to 255. A designated button on
the keyboard allowed participants to toggle between the two
modalities during the exploration phase, enabling them to
choose which modality to adjust. Participants were instructed
to familiarize themselves with the full ranges of the haptic
and visual stimuli and their correlation, using the sliders as a
reference. They were informed that the sliders would not be
available in the subsequent phase.

2) Intensity Matching: In the intensity matching phase,
participants were tasked with aligning the intensity of one
sensory modality (haptic or visual) to a reference intensity
provided in the other modality. This involved two distinct
conditions: a haptic reference modality, where participants
matched the visual stimulus to a given haptic intensity, and
a visual reference modality, where they matched the haptic
stimulus to a given visual intensity.

Following this setup, participants completed two experimen-
tal blocks in each condition. Specifically, participants used the
same limitless dial configuration as in the intensity exploration
phase to adjust the intensity of one stimulus to match a given
reference stimulus. However, in this phase, the sliders were
no longer displayed. Participants were allotted 90 seconds to
submit their matched intensity for each trial, after which the
current value was automatically recorded if the time limit was
exceeded. Eight reference intensities, normalized and evenly
distributed within the range of 0 to 1 (excluding endpoints),
were used. The 8 reference intensities were shown 4 times in a
block randomized order for a total of 32 trials. The sequence
of reference intensities was maintained across both blocks.
The order in which haptic and visual reference stimuli were
presented, whether the haptic or visual modality served as the
reference first, was counterbalanced across participants.

Upon completing each block, participants completed the
NASA Task Load Index (NASA-TLX) questionnaire to evalu-
ate cognitive workload [16]. At the conclusion of the session,
participants were asked for a description of their strategies.

D. Data Analysis

We obtained two datasets for each participant: (1) the visual
reference experiment and (2) the haptic reference experiment.
Before analysis, the matched intensity was normalized such
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that values ranged from O to 1. This enabled a one-to-
one relationship between the two modalities. The following
analyses of these datasets will aim to (1) compare participants’
performance across the two experimental conditions and (2)
develop a protocol to help future researchers find participant-
specific models that ensure perceptual equity in multimodal
motor control experiments.

1) Comparing Dataset and Fit: We compared two different
modeling approaches for deriving participant-specific models:
a linear model and an exponential model. The linear model
was selected because the experimental protocol inherently
established a linear relationship between the haptic and visual
modalities. Additionally, we included the exponential model
because it has been employed in prior research [13], [17].
Thus, for each participant and experiment, the observed data
were fit to both linear and exponential models using MATLAB
2024 b’s fitlm and fitnlm functions, respectively.

Prior to model fitting, we applied two distinct data sampling
paradigms. In the first paradigm, referred to as “All Data,”
we used all 32 data points collected across the four blocks,
each consisting of eight reference intensities. In the second
paradigm, referred to as “Average + Origin,” we averaged the
data across blocks at the eight reference intensities and added a
ninth data point at the origin, as it is assumed that participants
can identify when no reference intensity is provided. This
second approach aligns with the methodology used in [17].

In summary, for each participant and each experiment, we
generated a total of four models, combining two datasets
(“All Data” and “Average + Origin”) with two fits (linear
and exponential). For each model, we report the coefficient
of determination, R2, as a measure of the goodness of fit. To
compare each model’s ability to sufficiently describe the data,
we run a 2x2 (2 datasets x 2 fits) ANOVA on R2.

2) Finding the Optimal Reduced Fit: To optimize the cross-
modal matching procedure for efficiency, we aimed to deter-
mine the minimum number of blocks and reference intensities
needed to achieve a model fit comparable to that obtained
with the full experimental dataset. To this end, we conducted
a Monte Carlo simulation for each participant, experiment, and
fit. This simulation fit the data under 657 different conditions,
derived as follows: we considered three block configurations
(2, 3, or 4 blocks, preserving their sequential order to simulate
truncated experiments) and all possible subsets of 3 to 8 ref-
erence intensities for each stimulus. The subsets of reference
intensities were determined using the binomial coefficient (Z) R
where n = 8 and k ranged from 3 to 8. Note that a minimum
of three reference points was required for fitting a linear
model. This resulted in Y;_, (§) = 219 combinations of
reference intensities. Multiplying these 219 combinations by
the three block configurations yielded 657 total conditions. By
systematically varying these parameters, we aimed to identify
an experimental design that balances efficiency and accuracy
by minimizing the cost function:

" blocks intensities
cost = .
4 8

-10- (x1 error+xg error) (1)
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Fig. 2. Linear and exponential fits for a representative participant (Participant
10) in the cross-modal matching experiment. Subplots include: (a) visual
modality as the reference (All Data), (b) visual modality as the reference
(Average + Origin), (c) haptic modality as the reference (All Data), and (d)
haptic modality as the reference (Average + Origin).

where blocks is the number of blocks used, intensities is the
number of intensities used. x1 error and xo error represent
the deviation between the model’s coefficients fitted to the
subset of data and the model’s coefficients fitted to the full
dataset. A weighting factor of 10 was applied to the error term
to heavily penalize deviations from the original fit heavily,
ensuring the reduced dataset is consistent with the full dataset’s
fit.

After running the simulation, we identified the best fit
for each case as the one that minimized the cost function
defined in Eq. 1. This process yielded 24 optimal fits (12
participants x 2 experiments) for each dataset. To compare the
characteristics of these optimally reduced fits, we conducted
a paired Student’s t-test to evaluate differences in the number
of intensities, number of blocks, x; error, x5 error, cost, and
R? across the datasets.

3) Task Performance: We sought to understand how partic-
ipants’ performance varied between the two experiments. To
quantify performance, we calculated error as the absolute dif-
ference between the normalized matched intensity and the nor-
malized reference intensity error = |matched — reference|.
Recall that in Section II-C, the relationship between the two
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Fig. 3. Average coefficient of determination, B2, 4 1 standard deviation
for each dataset and fit across participants, with (a) visual modality as the
reference and (b) haptic modality as the reference.

modalities was inherently linear; after normalization, it became
one-to-one. If participants understood the underlying relation-
ship perfectly, their normalized matched intensity would equal
the normalized reference intensity.

To compare performance across experiments, we conducted
a paired Student’s t-test on the average error for each par-
ticipant (averaged across all trials within each experiment).
Additionally, we tested whether reference intensity or fatigue
influenced performance. For reference intensity, we averaged
each participant’s error across trials at each intensity level and
fit a linear model to error as a function of reference intensity. A
significant slope would indicate that reference intensity affects
performance. For fatigue, we averaged each participant’s error
across trials within each block and fit a linear model to error
as a function of the block. A significant positive slope would
indicate a decline in performance over time.

We analyzed NASA-TLX data using a two-way ANOVA
to evaluate the effects of reference modality and category
(mental demand, physical demand, temporal demand, effort,
frustration, and perceived performance) on subjective work-
load ratings. If a significant effect was found, post-hoc paired
Students’ t-test was used to identify any significant differences
between subcategories.

All data processing and statistical analyses were performed
using custom scripts in MATLAB 2024. The significance level
for statistical tests was o = 0.05.

III. RESULTS

A. Comparing Dataset and Fit

Fig. 2 illustrates the linear and exponential fits for a repre-
sentative participant, providing a visual comparison of model
performance. The models were assessed using the coefficient
of determination, R2, as a measure of goodness of fit.
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Fig. 4. Optimal reduced fit example for a representative participant (Partici-
pant 10), highlighting the reduced blocks and reference intensities. Subplots
include: (a) visual modality as the reference (All Data), (b) visual modality
as the reference (Average + Origin), (c) haptic modality as the reference (All
Data), and (d) haptic modality as the reference (Average + Origin).

Fig. 3 shows the average R? across participants separated
by experiment, dataset, and fit. Table I shows how each of the
4 models performed, in describing a participant’s experimental
data. Of note, all models were statistically significant. A 2x2
(2 datasets x 2 fits) ANOVA revealed a significant effect
of dataset (F' 95 = 6.458,p = 0.0127); there was not a
significant effect of fit (p > 0.05) nor a significant interaction
(p > 0.05). However, the linear fit generally outperformed the
exponential fit.

B. Finding the Optimal Reduced Fit

While the previous analysis included two datasets and two
fits, we focused here on the linear fit for succinctness, as it
generally performed better than the exponential fit and aligned
with the underlying linear relationship in the task. An example
for participant 10 is shown in Fig. 4.

Across the 24 optimal reduced fits produced for each of
the Linear “All Data” and linear “Average + Origin” data
we compared the number of intensities, number of blocks,
21 error, xo error, cost and R? across the datasets. A paired
Student’s t-test revealed a significant effect of dataset on
number of blocks (“All”: M=3.54, SD=0.88; “Average +
Origin”: M=2.38, SD=1.06; p<0.001), number of intensi-
ties (“All”: M=5.42, SD=1.44; “Average + Origin”: M=3,
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24 OPTIMAL REDUCED FITS. ‘ALL,” AND ‘AVG + O,” DENOTE THE ALL
DATA AND AVERAGE + ORIGIN DATASETS.

Reference Intensity

1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9
All 071 058 063 058 075 067 075 0.75
Avg + O 058 029 033 042 042 038 025 033

SD=0; p<0.001), z; error (“All”’: M=1.4e-03, SD=1.6e-03;
“Average + Origin”: M=5.2e-03, SD=5.1e-03; p=1.19¢e-03),
z9 error (“All”: M=1.2e-03, SD=1.7e-03; “Average + Ori-
gin”: M=4.8e-03, SD=7.3e-03; p=2.19¢-02), and R? (“All”:
M=0.66, SD=0.17; “Average + Origin”: M=0.97, SD=0.022;
p<0.001). However, there was not a significant effect on cost
(“All”: M=0.10, SD=8.9e-02; “Average + Origin”: M=0.15,
SD=0.11; p=0.10).

Table II shows the percentage of times each reference inten-
sity appeared in the 24 optimal reduced fits. In the “All Data”
dataset, edge reference intensities (e.g., 1/9 and 8/9) were the
most frequently used, but overall, the dataset exhibited some
uniformity by often including more than five intensities. In
contrast, the “Average + Origin” dataset used an average of
approximately 3.54 reference intensities, and mostly included
the intensities 1/9, 4/9, 5/9, and 6/9, in that order. This dataset
generally excluded higher reference intensities.

C. Performance

Participants’ performance was quantified by calculating
the error as the absolute difference between the normalized
matched intensity and the normalized reference intensity.
Then, a paired Student’s ¢-test was conducted to compare
average errors across the two experiments for each participant.
The test revealed no significant effect of the experiment on
performance (p > 0.05). However, participants performed
better in the visual reference experiment, as seen in Fig. 5.
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Fig. 6. Participant error as a function of reference intensity, demonstrating
increased error at higher intensities. Subplots include: (a) visual modality as
the reference and (b) haptic modality as the reference.

To examine the impact of reference intensity on perfor-
mance, a linear model was fit to the error as a function of
reference intensity. In both experiments, the model returned a
significant positive slope (visual reference: M=0.33, p<0.001
and haptic reference: M=0.38, p=<0.001) indicating that par-
ticipants performed worse at higher reference intensities, as
shown in Fig. 6.

Similarly, to evaluate the impact of fatigue, a linear model
was fit to the error as a function of block. In both exper-
iments, the model did not yield a significant slope (visual
reference: M=5.7e-04, p>0.05 and haptic reference: M=1.4e-
06, p>0.05), indicating that participants’ performance neither
decreased nor increased as the experiment progressed, as
shown in Fig. 7. This suggests that participants did not suffer
from fatigue over the course of the study.

Finally, the two-way ANOVA on workload ratings revealed
no statistically significant differences in NASA-TLX scores
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Fig. 7. Participant error as a function of block, showing stable performance
throughout the experiment. Subplots include: (a) visual modality as the
reference and (b) haptic modality as the reference.

TABLE III
NASA TLX SCORES FOR EACH WORKLOAD DIMENSION ACROSS THE
VISUAL AND HAPTIC REFERENCE CONDITIONS. AVG AND SD DENOTE THE
AVERAGE AND STANDARD DEVIATIONS ACROSS PARTICIPANTS.

Visual Reference = Haptic Reference

Mental Demand -1.25£3.72 0.75+4.77
Physical Demand -3.33+£3.72 -2.58+5.37
Temporal Demand -5.75+4.18 -6.00+4.35

Effort 0.17+4.06 2.831+3.66
Frustration -4.50+5.16 -3.08+3.66
Perceived Performance 11.584+5.16 9.58+2.94

across task categories or reference modalities. Additionally,
there was no significant interaction. The survey data is sum-
marized in Table IIL.

IV. DISCUSSION

This study refined cross-modal matching procedures to
enhance perceptual equity in multimodal psychophysics and
non-psychophysics experiments by systematically evaluating
and optimizing experimental parameters. Twelve participants
completed two matching experiments using the HAND [6],
[7], aligning visual and haptic stimuli according to a visual
or haptic reference (Fig. 1). Data were analyzed using two
datasets (All Data” and Average + Origin”) and two fits (linear
and exponential). The linear fit consistently outperformed
the exponential fit, aligning with the task’s inherent linear
relationship. Simulations identified the minimum number of
blocks and reference intensities needed to achieve comparable
model fits to the full dataset. The All Data” approach utilized a
broader range of intensities, while Average + Origin” favored
low-to-mid-range intensities, excluding higher ones. Partici-
pants showed greater error at higher intensities but exhibited
no signs of fatigue throughout the experiment. These findings
provide actionable guidelines for streamlining cross-modal
matching protocols while maintaining accuracy and efficiency,
contributing to developing effective rehabilitation protocols.
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When comparing goodness of fit (R?), we found that the
‘Average + Origin’ dataset statistically outperformed the °‘All
Data’ dataset (Table I). This result is supported by mathemat-
ical reasoning. The ‘Average + Origin’ dataset uses fewer data
points and averages across blocks, resulting in one matched
(output) point for each reference (input) point (Fig 2). This re-
duction in variance around the fit line increases R?, producing
an artificial advantage. It underscores a trade-off: improved
model performance comes at the cost of ignoring trial-level
variability. Importantly, the ‘Average + Origin’ dataset captures
the overall trend between modalities, the primary goal of cross-
modal matching. By prioritizing the overarching relationship,
this approach ensures perceptual equity without being hindered
by trial-level noise.

While the ‘Average + Origin’ method modeled the data
well for healthy participants, it assumes no perceptual bias
at zero intensity. This assumption may not hold in clinical
populations, such as stroke survivors, who often experience
sensory deficits or altered perceptual baselines. Testing this
paradigm with individuals exhibiting perceptual biases could
reveal whether the ‘All Data’ method provides better fits. Such
findings could refine the protocol and offer deeper insights into
how sensory encoding variability impacts calibration methods
across populations. These considerations will guide future
studies to improve the adaptability and robustness of cross-
modal matching protocols for motor rehabilitation.

The optimal reduced order fits generated through the Monte
Carlo simulation revealed an important observation: while the
“Average + Origin” dataset achieved a significantly worse x;
and z9 error compared to the “All Data” dataset, the overall
cost was not significantly different between the two datasets
(refer to Section III-B. Upon closer inspection, the errors
in both datasets were quite small (z; error: ~ 1.4 x 1073
and ~ 5.2 x 1073 for “All Data” and “Average + Origin,”’
respectively; x5 error: ~ 1.2 x 1073 and ~ 4.8 x 1073, re-
spectively). This indicates that the ‘Average + Origin’ dataset,
while slightly sacrificing fit accuracy compared to the non-
reduced dataset, achieved this with fewer blocks and reference
intensities. The reduced order fit suggested 2-3 blocks and 3
reference intensities. While participants were allotted 1 minute
per trial, they completed each trial in an average of 12 seconds.
Based on this performance, a full experiment following the
reduced order fit, including both reference modalities, would
take less than 5 minutes. Even if participants used the full
allotted time, the reduced protocol would take only 12 to
18 minutes, significantly shorter than the original maximum
length of 64 minutes (4 blocks x 8 reference intensities x
2 experiments). The result is a more efficient protocol that
still captures the cross-modal relationship between modalities.
This trade-off highlights the utility of the ‘Average + Origin’
approach for balancing efficiency with maintaining critical
insights into sensory integration.

The performance of participants, measured by absolute
error, did not differ significantly between the two tasks (Fig.
5). This result is further confirmed by the NASA-TLX results,
which showed no significant differences in workload across the
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tasks. This consistency across tasks highlights the robustness
of this cross-modal matching experiment and its potential
applicability beyond the visual and haptic modalities explored
here. Such an approach could be useful for studying other sen-
sorimotor modalities where perceptual equity is critical, such
as auditory-haptic or proprioceptive-visual interactions. Future
work should build on this foundation by conducting similar
experiments to explore these modalities, further broadening
the scope and impact of cross-modal matching techniques in
sensorimotor research.

Participant performance, measured by absolute error, was
unaffected by the number of blocks in the experiment (Fig.
7). Performance remained consistent across blocks, indicating
no significant changes due to fatigue or learning effects as the
experiment progressed. This stability suggests that reducing
the number of blocks, as proposed by the reduced order fit,
would not negatively impact results. By maintaining consistent
performance throughout the task, the reduced order approach
ensures overall trends are captured accurately without com-
promising data integrity or missing potential learning effects.
This finding further supports the feasibility of streamlining
cross-modal matching experiments for improved efficiency.

In contrast, there was a clear effect of reference intensity
on participants’ error; participants exhibited greater errors at
higher intensities, possibly due to sensory saturation (Fig.
6). This trend explains why the optimal reduced fits in the
‘Average + Origin’ dataset tended to exclude data points at
higher intensities. This observation is a critical considera-
tion for future experimenters. It suggests that certain ranges
within a modality, in this case, higher intensities, may lead
to diminished performance and weaker correlations between
modalities. To address this, experiments should avoid op-
erating within these problematic ranges and exclude them
from cross-modal matching tasks to ensure robust results. Our
formulation of reduced order fits offers a distinct advantage
here: it programmatically identified these problematic intensity
ranges and excluded them. Moreover, in stroke survivors,
altered sensory processing may exacerbate sensory saturation,
impacting clinical applicability. Future work should explore
adaptive scaling corrections to optimize feedback precision.

A. Limitations

In this study, we initially compared linear and exponential
fits to the data and found no statistical difference between
the two fits. Based on this result and the predetermined
understanding that the relationship between visual and hap-
tic modalities in this task is inherently linear, we focused
our analysis on linear fits. This approach was justified for
this specific task, as the experimental design deliberately
established a one-to-one relationship between modalities after
normalization. However, other experiments may not have such
a predetermined understanding of the underlying relationship
between modalities. In these cases, it may be necessary to
explore a wider range of models, including nonlinear fits, to
accurately capture the relationship in the data. However, that
is beyond the scope of this study.
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Another limitation of this study is that it was conducted
exclusively with healthy participants, which may limit gen-
eralizability to clinical populations, such as stroke survivors.
However, our results showed that performance remained stable
across blocks in healthy participants, with no evidence of
fatigue affecting performance. This finding justifies the use
of a reduced protocol, as reducing the number of blocks does
not compromise data quality. Such a streamlined protocol is
particularly valuable for patient populations, where fatigue
and task duration are critical concerns. Additionally, stroke
survivors’ perceptual deficits may introduce non-linearity in
matching tasks; here, we included exponential fits to account
for such variations. Nonetheless, future research should val-
idate these reduced protocols with clinical populations to
ensure they retain effectiveness while accommodating the
unique challenges posed by sensory and motor impairments.

B. Impact

This work advances cross-modal matching experiments by
identifying reduced experimental designs that maintain accu-
racy while minimizing participant fatigue and time require-
ments. Here, we reduced the duration of the study by a factor
of 5. These streamlined protocols are particularly beneficial
in neurorehabilitation, where patients often face physical and
cognitive limitations. By reducing the number of trials and
reference intensities, this approach simplifies the experimental
process while preserving data quality, paving the way for
broader adoption in clinical and research settings.

The study also emphasizes the importance of perceptual
equity in multimodal experiments by providing a framework
for fair comparisons across sensory modalities. By aligning
stimuli to achieve comparable intensities, it addresses a key
challenge in sensory integration research [5]. These principles
extend beyond visual and haptic modalities, offering a method-
ological foundation for investigating other sensory interactions
and their roles in motor control and neurorehabilitation. For

modal matching is not just a refinement — it is a necessary
evolution for multimodal research, rehabilitation, and beyond.
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