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Abstract—The analysis of human movements has highlighted
the presence of stereotyped coordination patterns among the
different joints of the human body. These patterns are commonly
referred to as kinematic synergies. Synergies have been used
to both elucidate the underlying neuromotor control strategies
adopted by humans during coordinated motion and inform the
design and control of assistive and rehabilitative devices such as
prostheses and exoskeletons. A particularly thorny problem in the
analysis of synergies is the comparison of the synergy postures
i.e., the hyper-dimensional vectors containing the contribution
of each analyzed feature (e.g., joint angles) to the considered
synergies. Often, synergy postures are compared using cosine sim-
ilarity, which is sensitive to the dimensionality of the input data
and does not offer an intuitive understanding of the synergies’
similarities and differences. In this study, we introduce a new
geometric method, Geometric Configuration Similarity (GCS),
specifically designed to compare kinematic synergy postures, with
a particular emphasis on hand kinematic synergies. GCS provides
a more intuitive geometric understanding of how these postures
relate to one another. We demonstrate its advantages over cosine
similarity through experimental and numerical results, offering
the human motor control and rehabilitation robotics communities
a new tool for analyzing kinematic hand synergies and improving
the design and control of assistive systems.

Index Terms—synergies, kinematics, hand, manipulation, dex-
terity, similarity

I. INTRODUCTION

The fine and dexterous control of the hand requires the
coordination of a large number of joint degrees of freedom
(20+) (i.e., hand joints), and more than double that number of
intrinsic and extrinsic muscles of the hand [1], [2]. Given this
complexity, the question arises: how do humans seamlessly
control their hands without incurring the control limitations
associated with the curse of dimensionality [3]? One of the
leading theories assumes that humans might take advantage
of lower-dimensional and sufficiently stereotyped commands
to simplify the motor control problem. Such commands are
often referred to as motor synergies, and depending on the
considered physiological nature of the signals, they are usu-
ally classified as neural [4], [5], muscular [6] or kinematic
synergies [7]–[10].

The seminal work by Santello et al. [4], [7] showed that
a few kinematic synergies - typically extracted by means of
dimensionality reduction techniques such as principal com-
ponent analysis (PCA) [11] or singular value decomposition

(SVD) [12] - accounted for most of the variance in the
data of healthy humans performing a variety of reaching
and grasping movements. Subsequent work has found similar
results in tasks that involve object manipulation [8], [13],
[14] the American sign language [6], and even piano playing
[10], [15]. For review see [16]. Moreover, some research
has highlighted how such synergies are both the results of
biomechanical constraints (e.g., tendons and ligaments), as
well as descending neural commands [8], [17]. Additionally,
research indicates that the reduction of the operational degrees
of freedom of the hand may facilitate more straightforward
control [18]–[22]. Prior work by the authors showed how
humans need to recruit a growing number of synergies in
order to perform more advanced dexterous manipulation tasks
such as wire-harnessing or playing a musical instrument [10].
A recent theoretical framework highlighted how the number
of synergies that humans can employ to perform a given
motor task may exceed the number of controlled features,
such as joint angles or muscle contractions [23]. Moreover,
substantial efforts have been made to refine mathematical
methods for extracting synergies [9], [24], [25] through various
dimensionality reduction techniques [11], [12], [26].

However, a particularly thorny problem is represented by
the difficulty of comparing the synergy vectors resulting from
these reduction techniques. The synergy vectors or hyper-
points are often high dimensional - with dozens if not hundreds
of elements - which limits our capability to visualize and,
consequently, get a profound insight on their relation to
each other. A common approach to compare synergy vectors,
specifically termed ‘synergy postures’ for kinematic synergies,
is to compute the cosine similarity between them. The most
widely used formulation computes the positive angle between
two vectors, returning 0 if the vectors are orthogonal and 1 if
the vectors are collinear.

Recent work by Tessari and Hogan highlighted how the co-
sine similarity metric is sensitive to the number of dimensions
[27]. Specifically, for increasing dimensions the cosine simi-
larity between any 2 random vectors will tend to converge to a
value of about 0.75, with decreasing variance. This represents
a substantial limitation to the use and interpretability of such a
metric. An alternative approach would be to use a dimension-
insensitive metric, such as the dimension insensitve Euclidian
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metric (DIEM) [27]. This metric is unaffected by the number
of dimensions, enabling robust statistical analysis and hypothe-
sis testing—areas where cosine similarity falls short. However,
DIEM relies on comparing synergy vectors that are not of unit
length. This can be the case for muscular synergies extracted
through Non-Negative Matrix Factorization [26], [28], [29],
but not for kinematic synergies obtained through PCA or
SVD. Moreover, most distance metrics still do not provide
an intuitive way to visualize and internalize the similarity
between kinematic synergies. To address the limitations of
cosine similarity and DIEM, we propose a new geometric
approach to compare kinematic hand synergies, called “Ge-
ometric Configuration Similarity“. This method, which maps
kinematic synergies to task-space motion, enables users to
quantitatively compare and visualize pairs of kinematic hand
synergy postures. In the following sections, we demonstrate
the shortcomings of cosine similarity while contrasting it with
our proposed approach. Additionally, we provide a library for
future researchers to implement the Geometric Configuration
Similarity in their work.

II. MATERIALS AND METHODS

A. Synergy Extraction through SVD

Consider a matrix X ∈ Rn×m containing the kinematic data
of the joint trajectories recorded across n observations (e.g.,
the time evolution of each degree of freedom) and m number
of features (e.g., the number of analyzed degrees of freedom,
DoF) for a given set (one or more) of experiments.

According to West et al. [9], prior to synergy extraction the
data should be centered i.e., the mean value of each column
- which represents the average angular value for that DoF -
needs to removed. This is done to prevent the first synergy
from incorrectly ‘aiming’ toward the center of the offset data
distribution.

X∗ = X −mean(X) (1)

Then, synergies can be extracted using SVD — the most
adopted algorithm for kinematic synergy extraction [7], [8] —
on the mean-removed data set:

X∗ = U · S · V T (2)

where U ∈ Rn×n is an orthonormal matrix whose columns
denote the temporal evolution of a given synergy, S ∈ Rn×m

is diagonal matrix of singular values which give an estimate
of the Variance-Accounted-For (VAF) in a given synergy, and
V ∈ Rm×m is an orthonormal matrix whose columns repre-
sent the synergy vectors V = [v1,v2, ...,vm]. The elements
of each synergy vector represent the contribution of each DoF
to that synergy vi = [θ1, θ2, ..., θm]T . The synergy vectors vi

are of unitary length. For a geometrical interpretation of this,
see [9]. In the specific case of hand joint kinematic synergies,
the elements of vi represent the proportion by which each
joint of the hand contributes to that synergy.

B. Limitations of Cosine Similarity

Comparing a pair of synergy vectors vi,vj fundamentally
requires establishing a distance metric between these two
hyper-dimensional quantities. As briefly mentioned in the
Introduction, this is often done by computing the cosine
similarity between them:

cos(ϕ) =
|vi

T · vj|
||vi|| · ||vj||

(3)

However, Tessari et al. showed that this metric is sensitive
to the number of dimensions and, thus, is not able to
provide statistically reliable comparisons [27]. Specifically,
as the number of dimensions grows the cosine similarity of
two randomly generated vectors tends toward 0.75. Moreover,
the resulting computation does not provide an intuitive
geometrical understanding of how the posture of the hand
differs between the two synergy vectors.

C. Geometric Configuration Similarity

To address the limitations of the cosine similarity
metric—namely (i) dimension-sensitivity, and (ii) geometric
interpretability—the authors propose a new approach coined
‘Geometric Configuration Similarity’ (GCS), to compute the
degree of similarity or difference between any two pairs
of kinematic synergy vectors vi, and vj. The approach is
showcased for hand kinematic synergies, but its application
extends to any form of kinematic synergies at every level of
the human body.

The core idea of the GCS is to map the synergy vectors from
the joint-space to the task-space. This mapping is biomechan-
ically informed through direct kinematics. Given a specific
geometry of the hand (i.e., link lengths and joint types) the
mapping of any point p on the hand with respect to a set
of joint coordinates—assumed here to be the relative angles
between successive links—is unique and well defined as:

p = L(Θ) = L(θ1, ..., θm) (4)

where L describes the forward kinematics.
To map a synergy vector vi to a hand task-space configura-

tion, we need to (i) multiply it by an activation coefficient
u—which could also be a function, u(t), if the intention
is to reconstruct the entire motion—and (ii) add back the
previously subtracted average posture of the original dataset
Θavg = mean(X):

Θi = u · vi +Θavg (5)

Together, Equations 4 and 5, allow for the mapping of a
synergy vector to any point of the considered geometry (e.g.,
the hand).

In the proposed case (i.e., hand kinematic synergies), we
considered a 20 DoFs hand model characterized by 4 DoFs
per finger. For the index, middle, ring and little fingers, we
included flexion-extension of the metacarpophalangeal (MCP),
proximal interphalangeal (PIP), and distal interphalangeal
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Fig. 1. Adopted hand model. Panel (A) shows the considered human
anatomical joints. Panel (B) presents the reconstructed rigid link model.

(DIP) joints, and abduction-adduction (ABD) of the metacar-
pophalangeal joint. For the thumb, we included rotation (ROT)
and abduction-adduction (ABD) at the carpometacarpal and
flexion-extension at the metacarpophalangeal (MCP), and in-
terphalangeal (IP) joints. Figure 1A provides a schematic
representation of the considered anatomical hand joint.

A rigid-link model (Figure 1B), based on the aforemen-
tioned 20 DoFs, was developed considering the following two
assumptions. First, the PIP and DIP joints of the index, middle,
ring, and little fingers, along with the MCP and IP joints of
the thumb, were modeled as perfect rotational joints. Second,
the MCP and ABD joints of the index, middle, ring, and little
fingers, as well as the ROT and ABD joints of the thumb,
were modeled as universal joints (U-joints or Cardan joints).

The link lengths were sized considering the 50th percentile
male hand size [30]. However, we want to emphasize that the
proposed metric is not influenced by the size of the considered
hand. Additional details are provided in the Discussion.

Considering the presented hand model and the mapping
from joint-space to task-space using Equations 4 and 5, the
‘Geometric Configuration Similarity’ fundamentally computes
the Euclidean distance between a pair of hand configurations
from two synergy vectors vi,vj. The Euclidian distance is
computed at 3 different key-points for each finger. Specifically,
for the index, middle, ring and little fingers the Cartesian
coordinates of the PIP joint, DIP joint and tip of the finger
are considered; for the thumb, the MCP joint, IP joint and tip
of the thumb are considered. These distances are normalized
by the maximum distance that each key-point can assume
considering the biomechanical range of motion (ROM) limits
of each joint of the hand. The ROM for each joint were
extracted from the works of: Bain et al. for the index, middle,
ring and little MCP, DIP, and PIP joints [31], Gracia-Ibanez
et al. for the ROT, MCP, and IP joints of the thumb [32], and
from available online data sheets for the ABD joints [33].

This normalization provides two advantages: (i) it ensures
that the size of the hand will not influence the proposed metric,
(ii) it guarantees a finite range for the metric, namely 0 to 100.

Mathematically, the Geometric Configuration Similarity be-
tween two task-space mapped synergy vectors Θi,Θj is for-

mulated as:

GCS(f) =
1

3

3∑
k=1

100 ·
(
1− ||pk(Θi)− pk(Θj)||22

max(d(k, f))

)
with f = 1, ..., 5

(6)

Where f represents the finger index, and k is the key-
point index. pk(Θi), and pk(Θj) are, respectively, the task-
space Cartesian positions of the k-th key-point for the synergy
vector vi and vj. max(d(k, f)) is the maximum Euclidean
distance that the k-th key-point of the f -th finger can assume
considering the human physiological ROM [31]–[33]. Note,
GCS produces a similarity measure for each of the five fingers.

Intuitively, for a given finger f , if the two synergy vec-
tors map to the exact same position, their distance will be
||pk(Θi) − pk(Θj)||22 = 0∀k, and therefore the Geometric
Configuration Similarity will be 100. Alternatively, if the two
synergy vectors map to the maximum possible biomechanical
distance ||pk(Θi) − pk(Θj)||22 = max(d(k, f))∀k, then the
Geometric Configuration Similarity will be 0.

To provide a unique scalar macroscopic description of
the similarity between two synergy vectors, we can use the
arithmetic mean of the Geometric Configuration Similarities
of the five fingers:

mean(GCS) =
1

5

5∑
f=1

GCS(f) (7)

D. The Selection of the Activation Coefficients

Particular attention must be given to the selection of the
activation coefficient u. As presented in Equation 5, the
activation coefficient is necessary to map the synergy vector
to a given joint configuration or trajectory. In fact, without
an activation coefficient, the synergy vectors just inform us of
the proportionality ratio between features but not the extent
to which such synergies are employed. Several options for the
selection of u are possible. However, for the sake of comparing
synergies, two main approaches are considered here.

The first approach consists in using the maximum and
minimum activation coefficients found in the columns of the
matrix product U ·S = T , found in Equation 2. The resulting
matrix T = [t1, t2, ..., tm] will have as columns the temporal
evolutions of each synergy vector based on the input data X∗.
Consequently, the min(t) and max(t) values of each temporal
evolution represent the maximum and minimum values that a
given synergy assumed based on the input data.

This approach is data-driven and, therefore, eliminates the
risk of over-activating a synergy vector with respect to another
one. Moreover, it will always generate physiologically reason-
able movements - assuming no errors during data acquisition.

However, one should remember that by using PCA or SVD,
the synergies are extracted in decreasing order of variance-
accounted-for. Therefore, higher order synergies will have
smaller activation coefficients, and this will influence the
comparability of synergy vectors with different orders.
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Moreover, if interested in reconstructing the entire motion,
you can use these activation coefficients to craft a personalized
temporal evolution. In the provided software package, a 4th

order polynomial (sine-wave like) starting at 0 and stopping
at 0 and passing through max(t) and min(t) was adopted.

The second approach is instead driven by biomechanics.
Instead of using the activation coefficients extracted through
PCA/SVD, these can be modeled so that a synergy vector
spans the maximum range of motion of a certain feature. A
reasonable choice is to select the largest element of a synergy
vector i.e., the largest contributing joint DoF in the hand case,
and scale it such that its value will reach the minimum and
maximum ROM of that hand joint. In this case, the activation
functions for higher order synergies will not be limited by
the lower variance-accounted-for synergies. However, it is not
guaranteed that the resulting hand posture will represent a
physiological configuration.

The authors think the selection of the appropriate activation
function is context dependent. In the case of comparison with
experimental data, the first approach i.e., using the columns
of T , seems more appropriate, and that is what is used in the
Results of this work. In the case of using synergies for design
or control purposes, the second approach i.e., extending the
synergy to the ROM limits, might be the right choice.

E. The three Geometric Configuration Similarities

Considering two synergy vectors vi, and vj extracted from
dataset having average postures Θiavg , and Θjavg , and with
minimum and maximum activation coefficients umaxi

, umaxj
,

umini
, and uminj

, three different, Geometric Configuration
Similarities are computed. These represent the average posture,
maximum posture and minimum posture conditions:

GCS(f)avg|Θi = Θiavg ∧Θj = Θjavg (8)
GCS(f)max|Θi = umaxi · vi +Θiavg∧ (9)

Θj = umaxj · vj +Θjavg

GCS(f)min|Θi = umini · vi +Θiavg∧ (10)
Θj = uminj · vj +Θjavg

The GCS(f)avg provides information on how much the
average postures of the considered datasets are similar to
each other. This parameter is independent of the considered
synergy vectors and it is always equal to 100 when the
comparison is performed between synergies extracted from the
same dataset i.e., Θi = Θj. GCS(f)max and GCS(f)min

quantify the geometric difference between the maximum or
minimum postures between the considered synergy vectors.

Two different applications of the Geometric Configuration
Similarity are reported in the following. The first presents a
numerical example involving two biomechanically relevant,
artificially synthesized hand postures that yield a GCS close
to the minimum. This example highlights a disparity between
GCS and cosine similarity. The second provides an experi-
mental example, consisting of two case studies, and applies

the GCS to the kinematic hand synergies extracted from the
authors’ previously reported work on piano playing [10].

A software package to run GCS and reproduce the experi-
mental results presented in this work can be found at the fol-
lowing GitHub repository: https://github.com/ftessari23/GCS.

III. RESULTS

The hand model was calibrated on the 50th percentile male
hand, and the resulting maximum distances max(d(k, f)) for
each key-point (PIP,DIP,Tip) and each finger are reported in
Table III.

max(d(k, f)) Joints
[m] Tip DIP (IP) PIP (MCP)

Thumb 0.195 ± 0.003 0.159± < 0.001 0.083± < 0.001
Index 0.176 ± 0.003 0.126 ± 0.002 0.071± < 0.001

Middle 0.193 ± 0.003 0.144 ± 0.003 0.085± < 0.001
Ring 0.194 ± 0.002 0.149 ± 0.002 0.086± < 0.001
Little 0.170 ± 0.003 0.126 ± 0.002 0.076± < 0.001

TABLE I
MAXIMUM EUCLIDEAN DISTANCE PLUS-MINUS THE NUMERICAL

MEASUREMENT TOLERANCE AT EACH KEY-POINT (PIP, DIP, TIP) IN EACH
FINGER. IN BRACKETS YOU CAN FIND THE NAME OF THE THUMB JOINTS.

A. Numerical Example: Joints Limit Hand Configurations

In this first example, we aimed to compare the most
biologically distinct hand postures. Thus, we chose two hand
configurations in which the first has all the joints at the
maximum ROM and, the second has all the joints at the
minimum ROM:

Θ1 = [θ1max
, ..., θ20max

] (11)
Θ2 = [θ1min

, ..., θ20min
] (12)

The cosine similarity between these biomechanically dis-
tinct hand postures is 0.71, which corresponds to an angular
difference of about 44.6◦. This suggests a non-negligible
similarity between the vectors.

However, when the vectors are mapped to the task-space
and the GCS is computed, we observe (Figure 2) that the
2 postures have very poor similarity - as expected - with
an average GCS of 8.7% across the five fingers. It is worth
emphasizing that, despite the very small value, the GCS did
not converge completely to 0%. This is expected, since the
maximum and minimum ROM do not always represent the
condition of maximum Euclidean distance for each of the
different finger key-points.

B. Experimental Example: Piano Playing

Next, we compare kinematic synergies extracted on a group
of healthy individuals while performing a series of piano
pieces. All subjects were right-handed, received a comprehen-
sive briefing on the experimental procedures, and signed a
consent form approved by MIT’s Institutional Review Board.
We invite readers to refer to the work by West et al. for details
on the experimental data acquisition and processing [10]. Here,
two case studies are considered to highlight the benefits of the
Geometric Configuration Similarity.
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(B)(A)

Fig. 2. Geometric Configuration Similarity between two synthetic synergy
vectors v1 and v2 obtained by having the hand joints at their maximum and
minimum ROM, respectively. In panel (A), the orange, dotted polygon repre-
sents the comparison between the two hand configuration postures GCS(f).
In panel (B), the maximum hand postures Θ1max (v1) and Θ2max (v2) are
reported in the 3D hand model in gray and red, respectively.

1) Within-Subject - Different Order Synergies: In the first
case study, we present a comparison of the first 2 kinematic
synergies of a representative subject (nr. 2) performing the
Bach Prelude in C Major by J.S. Bach. The synergies were
extracted using the approach presented in Section II.A; they
represent the first 2 columns of matrix V (i.e., v1 and v2).
They account, respectively, for 44% and 25% of the Variance-
Accounted-For (VAF). By computing the cosine similarity
of these two synergies, we observe that such synergies are
perfectly orthogonal:

cos(θ) =
|v1

T · v2|
||v1|| · ||v2||

= 0 (13)

This follows directly from SVD, as the columns of V are
orthonormal, meaning they are mutually orthogonal.

However, when using the Geometric Configuration Similar-
ity, we observe (Figure 3) that the two synergies - despite their
orthogonality - present substantial similarities. Specifically, the
maximum and minimum postures of the first 2 synergies show
an average Geometric Configuration Similarity across the five
fingers of 71.2% and 82.4%, respectively. The average posture
Θavg presents, instead, a GCS of 100%. This is a natural
consequence of the fact that both synergies were extracted
from the same dataset, thus they must have the same average
posture.

2) Between-Subjects - Same Order Synergies: In the second
case study, we compare the first synergies of two different
subjects (nr. 2 and nr. 5) performing the same piano piece
(i.e., Bach Prelude in C Major). These two synergies account,
respectively, for 44% and 42% of the Variance-Accounted-
For. Their cosine similarity is equal to 0.19, which represents
an angular difference of about 79◦. Once more, the synergies
appear close to orthogonality, and thus would typically be
considered very different postures.

However, when the synergies are compared with the Geo-
metric Configuration Similarity, we observe (Figure 4) that the
average postures present an average GCS of 89.4% indicating
that the two subjects had a similar - but not identical -

(A) (B)

Fig. 3. Geometric Configuration Similarity between the first two synergy
vectors, v1 and v2, of a representative subject playing the piano piece
Bach Prelude in C Major. In panel (A), the blue, dotted polygon represents
the comparison between average postures GCS(f)avg , the orange, dotted
polygon is the comparison between maximum postures GCS(f)max, and
the green, dotted polygon is the comparison between minimum postures
GCS(f)min. In panel (B), the maximum hand postures Θ1max (v1) and
Θ2max (v2) are reported in the 3D hand model in gray and red, respectively.

(A) (B)

Fig. 4. Geometric Configuration Similarity between the first synergy vectors
v1s2 and v1s5 of two representative subjects (nr.2 and nr. 5) performing
the same piano playing task i.e., Bach Prelude in C Major. In panel (A),
the blue, dotted polygon represents the comparison between average postures
GCS(f)avg , the orange, dotted polygon is the comparison between maxi-
mum postures GCS(f)max, and the green, dotted polygon is the comparison
between minimum postures GCS(f)min. In panel (B), the maximum hand
postures Θ1max (v1s2 ) and Θ1max (v1s5 ) are reported in the 3D hand
model respectively in gray and red, respectively.

average hand configuration while playing the same piano
piece. Moreover, the maximum and minimum hand postures
- dictated by each subjects’ first synergy - show an average
GCS of 64.5% and 78%, respectively. These values provide a
geometrically intuitive understanding of how similar the two
synergies between the subjects are. Moreover, this tool enables
us to observe that the index and little fingers are actually the
ones that were used most differently between the subjects (see
Figure 4).

IV. DISCUSSION

In this paper, we addressed the limitations of cosine simi-
larity by proposing a novel geometric approach for comparing
kinematic hand synergies, termed Geometric Configuration
Similarity (GCS). GCS utilizes MATLAB’s multibody sim-
ulation, Simscape, and forward kinematics to map joint space
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synergies to a task-space hand configuration. This mapping
enables both visual and analytical comparison of kinematic
synergies. Through numerical and experimental comparisons,
we demonstrate that GCS provides valuable insights over-
looked by cosine similarity. Looking ahead, we believe that
the publicly available GCS framework will assist researchers
in conducting more thorough analyses of hand kinematics.

A. Geometric Interpretability

1) Numerical Example: In our numerical example, we
compared two biologically distinct hand configurations: one
with all joints at their maximum range of motion (ROM)
and another with all joints at their minimum ROM. The
Geometric Configuration Similarity (GCS) metric revealed a
stark contrast between these two postures, yielding a low
similarity score of 8.7% across the five fingers (Fig. 2). This
finding highlights the significant differences in hand kinemat-
ics that are present, despite the similarity suggested by the
cosine similarity score of 0.71. Such a high cosine similarity
value implies significant similarity, which is misleading given
that the two configurations are functionally and anatomically
disparate.

This discrepancy underscores the limitations of relying
solely on cosine similarity for evaluating hand postures. While
cosine similarity may indicate a non-negligible relationship
between the two synergy vectors, it fails to capture the
true geometric differences that GCS effectively elucidates.
By mapping the synergy vectors to task-space configurations,
GCS provides a more intuitive representation of the distinct
hand postures, thereby enhancing our understanding of the
complex mechanics involved in hand manipulation.

It is important to note that in this numerical example, the
GCS did not reach a minimum value of zero; instead, it was
8.7% (Fig. 2). While it may be theoretically possible to achieve
a lower GCS, attaining a value of zero is unlikely. As outlined
in Eq. 6, the Cartesian distance between each pair of keypoints
is normalized by its theoretical maximum, which considers
the biomechanical range of motion. For the GCS to equal
zero, all keypoints would need to be positioned at points
of maximum distance simultaneously. However, due to the
interconnected nature of finger joints in our multibody model,
the position of each keypoint is influenced by the configu-
ration of the distal joints. Consequently, a configuration that
maximizes the distance between the PIP and DIP joints may
not necessarily maximize the distance at the TIP. This issue
becomes even more pronounced when considering movements
such as abduction and adduction. Nevertheless, Fig. 2 provides
a useful reference for understanding the range of GCS values
achievable under different configurations.

2) Experimental Example: In our first experimental exam-
ple (Within-Subject - Different Order Synergies), we examined
the kinematic synergies of a subject performing the Bach
Prelude in C Major, focusing on the first two synergy vectors
extracted via Singular Value Decomposition. While cosine
similarity indicates that these two vectors are orthogonal,
signifying that they span completely different hyperspaces—a

result of the SVD design—Geometric Configuration Similarity
reveals significant kinematic similarities in the configuration
space. This distinction is crucial, and it, again, underscores the
limitations of relying solely on cosine similarity to evaluate
hand postures. Moreover, GCS allows for a more intuitive
interpretation of the data, enabling us to easily identify which
fingers exhibit higher or lower similarity between the syn-
ergies. For example, in Fig. 3 we can see that the largest
discrepancy lies in the motion of the index finger, whose
maximum posture GCS is 57%, while there is high simi-
larity in the thumb whose minimum and maximum posture
GCS are 92% and 83%, respectively. Such insights are vital
when discussing the functional roles of each synergy in hand
movements. Consequently, one could argue that GCS serves
as a valuable proxy measure for assessing the similarity of
kinematic synergies as they relate to function, providing a
deeper understanding of the intricacies of hand manipulation.

In our second experimental example (Between-Subjects -
Same Order Synergies), we compared the first synergy vectors
of two different subjects performing the same piano piece, the
Bach Prelude in C Major. Notably, the cosine similarity for
these vectors was measured at 0.19, indicating a relatively
higher degree of similarity compared to the first example,
where cosine similarity was 0 for within-subject comparisons
of different order synergies. However, the Geometric Config-
uration Similarity tells a different story. In this case, the GCS
for the maximum posture scenario decreased from 71.2% in
the within-subject example to 64.5% when comparing between
subjects, and similarly dropped from 82.4% to 78% in the
minimum posture scenario. This juxtaposition highlights the
limitations of cosine similarity and shows that GCS provides a
more nuanced understanding of the functional similarities and
differences in hand configurations. Moreover, GCS intuitively
highlights that index and little finger motion might be the
root of this cause; their maximum posture GCS reduced from
57%, index, and 71%, little, (Fig. 3) to 43% and 56% (Fig.
4), respectively. Such insights are critical for assessing how
different individuals may employ similar synergies in varied
ways during complex motor tasks.

B. Methodological Considerations

We want to highlight that the choice to utilize three key
points per finger in measuring configuration was intentional
and is crucial for eliminating discrepancies that may arise
from redundancy in joint movements. For instance, if we were
to measure only the distance at the Tip of each finger, that
position could be achieved through multiple joint configura-
tions. Specifically, the fingertip is described by three Cartesian
degrees of freedom (DOF), while the finger possesses 4
(three flexion + 1 ab/addcution) DOFs, resulting in a one-
dimensional null space. This means that different combinations
of joint angles could yield the same TIP position, leading
to ambiguity in interpreting movement. By selecting three
key points—namely the PIP, DIP, and TIP, we increase the
number of task-space DOFs relative to joint-space DOFs. This
approach effectively eliminates the potential for errors due to
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redundancy, and enhances the reliability of the GCS metric in
capturing the complexities of hand movements.

The current version of the GCS is implemented in Mat-
lab 2023b by using the multibody library available in
Simulink/Simscape. However, alternatives exist. The first is to
use Exp[licit], a recently released robotic control library, which
has demonstrated better computational efficiency compared to
standard robotic control toolboxes [34]. A second alternative
is represented by advanced physics simulators such as Mujoco
[35]. It is worth emphasizing that GCS is independent of the
adopted software framework and is only a function of the
considered hand geometry.

C. Limitations

One limitation of this study lies in the geometric assump-
tions regarding the hand model used for analyzing kinematic
synergies. The model was based on a rigid-link representation
of a 20-degree-of-freedom hand, incorporating four degrees
of freedom per finger. However, more detailed mechanical
models could be used to include the hand’s remaining degrees
of freedom [36]. Additionally, the current model may not
adequately account for individual anatomical variations among
subjects (e.g., larger or smaller hands, as well as different
proportions between the phalanges), which could influence
the accuracy of the Geometric Configuration Similarity (GCS)
measurements. To help mitigate these limitations, we have
open-sourced the GCS framework, allowing future researchers
to utilize the metric and customize the hand model to better
fit the specific anatomical characteristics of their study popu-
lations. Moreover, we are planning to parameterize the GCS
model so that users will be able to input the hand percentile
and automatically scale the GCS to the size of interest.

Another limitation of this study is the inability of GCS to
provide statistical measures. In this regard, cosine similarity
also falls short. As noted in our previous study [27], cosine
similarity tends to converge toward 0.75, as the number of
dimensions increases. DIEM addresses this issue [27], but
requires non-unitary length vectors. Therefore, DIEM can
be applied to either the reconstructed joint configurations
(Equation 5) or the task-space positions (Equation 4). Future
work should investigate the statistical properties of GCS and
DIEM to enhance reliability and interpretability.

D. Impact

The discrepancies observed between cosine similarity and
Geometric Configuration Similarity (GCS) can be attributed
to the inherent differences in what each metric measures.
Cosine similarity evaluates the angle between vectors, provid-
ing insight into their orientation rather than their geometric
relationship in configuration space. This can lead - as shown
in this paper - to misleading interpretations that fail to capture
the intricate functional differences that exist between hand
configurations, potentially obscuring the understanding of how
specific movements contribute to overall hand function.

In contrast, GCS is inherently linked to the function of
hand movements, as it assesses geometric distances between

mapped configurations in task space. This metric provides
insights into how individual joint positions relate to functional
outcomes in hand manipulation. By focusing on spatial config-
urations, GCS reveals critical kinematic similarities and differ-
ences essential for understanding motor control. For instance,
it allows researchers to identify which fingers demonstrate
higher or lower similarity in their movements, thus connecting
the analysis of synergies to their functional roles.

This relationship highlights the utility of GCS in rehabilita-
tion and motor control research, offering a more meaningful
understanding of how hand movements serve specific func-
tional objectives. For example, the GCS could be used as
an input for the design of exoskeletal or prosthetic devices
[37], [38] that aim to reconstruct specific hand motions e.g.,
piano playing or tool-use. Often times synergy orthogonality
(observed through cosine similarity) is used to introduce a new
DOF in assistive or rehabilitative devices. GCS offers a much
more direct intuition of the geometric consequences of adding
a new synergy to a certain hand configuration, thus enabling
more adequate design choices. Additionally, GCS could be
used as a metric to assess the recovery of hand motor function
when computed between healthy and impaired individuals.

Finally, it is important to underline that the Geometric
Configuration Similarity approach can be extended beyond
hand kinematics to other parts of the human body such as
upper-limb or lower-limb kinematic synergies.

Comparing GCS and cosine similarity offers an interesting
parallel to a classic question in motor control: do humans plan
and execute motion using intrinsic or extrinsic coordinates
[39]–[41]? Cosine similarity, by comparing synergy vectors
based on joint configurations, inherently reflects comparisons
in intrinsic coordinates. This perspective has been used to
discuss how humans may simplify the highly redundant motor
control problem when planning an action. On the other hand,
GCS compares synergies after projecting them into task-space,
which corresponds to the end-effector positions and represents
the extrinsic coordinates in which actions are typically exe-
cuted. A substantial body of evidence suggests that humans
often plan motion in extrinsic coordinates [39]–[41], where
the focus is on achieving goals in the environment rather
than coordinating individual joints. Therefore, future work
using GCS could provide valuable insights into how humans
simplify path planning in extrinsic coordinates, shedding light
on how synergies are organized for task-level control.

V. CONCLUSIONS

The human hand, with its high degrees of freedom and
ability to perform a vast array of complex tasks, poses signif-
icant challenges for studying its kinematics and motor control
[36]. To simplify this analysis and enhance understanding,
researchers have turned to the concept of synergies [16].
Cosine similarity has traditionally been the go-to method for
comparing these synergies. However, as highlighted in this
paper, cosine similarity has notable limitations, particularly
when it comes to its interpretability and capturing the true
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geometric relationships between hand configurations. To ad-
dress these shortcomings, we introduced the Geometric Con-
figuration Similarity (GCS) metric, a tool designed to provide
researchers with a more intuitive and meaningful way to
compare kinematic synergies. GCS can help researchers gain
a deeper understanding of hand function, ultimately advancing
the study of hand motor control in both healthy and impaired
populations.
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K. Kyriakopoulos, A. Albu-Schäffer, C. Castellini, and A. Bicchi, “Hand
synergies: Integration of robotics and neuroscience for understanding the
control of biological and artificial hands,” pp. 1–23, jul 2016.

[17] M. H. Schieber and M. Santello, “Hand function: peripheral and central
constraints on performance,” Journal of applied physiology, vol. 96, pp.
2293–2300, 6 2004.

[18] T. Flash and B. Hochner, “Motor primitives in vertebrates and inverte-
brates,” pp. 660–666, dec 2005.

[19] J. N. Ingram, K. P. Körding, I. S. Howard, and D. M. Wolpert, “The
statistics of natural hand movements,” Experimental Brain Research, vol.
188, no. 2, 2008.

[20] S. A. Overduin, A. D’Avella, J. Roh, and E. Bizzi, “Modulation of mus-
cle synergy recruitment in primate grasping,” Journal of Neuroscience,
vol. 28, no. 4, 2008.

[21] S. A. Overduin, A. D’Avella, J. M. Carmena, and E. Bizzi, “Micros-
timulation Activates a Handful of Muscle Synergies,” Neuron, vol. 76,
no. 6, 2012.

[22] S. A. Overduin, A. D’Avella, J. Roh, J. M. Carmena, and E. Bizzi,
“Representation of muscle synergies in the primate brain,” Journal of
Neuroscience, vol. 35, no. 37, 2015.

[23] F. Tessari, A. West, and N. Hogan, “On human motor coordination: The
synergy expansion hypothesis,” bioRxiv, p. 2024.04.10.588877, 4 2024.

[24] N. Lambert-Shirzad and H. F. V. D. Loos, “Data sample size needed
for analysis of kinematic and muscle synergies in healthy and stroke
populations,” IEEE International Conference on Rehabilitation Robotics,
pp. 777–782, 8 2017.

[25] K. Zhao, Z. Zhang, H. Wen, and A. Scano, “Number of trials and
data structure affect the number and components of muscle synergies in
upper-limb reaching movements,” Physiological Measurement, vol. 43,
p. 105008, 10 2022.

[26] Y. X. Wang and Y. J. Zhang, “Nonnegative matrix factorization: A
comprehensive review,” IEEE Transactions on Knowledge and Data
Engineering, vol. 25, pp. 1336–1353, 6 2013.

[27] F. Tessari and N. Hogan, “Surpassing cosine similarity for multidimen-
sional comparisons: Dimension insensitive euclidean metric (diem),”
arXiv, 7 2024.

[28] M. F. Rabbi, C. Pizzolato, D. G. Lloyd, C. P. Carty, D. Devaprakash,
and L. E. Diamond, “Non-negative matrix factorisation is the most
appropriate method for extraction of muscle synergies in walking and
running,” Nature Scientific Reports, 2020.

[29] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J.
Plemmons, “Algorithms and applications for approximate nonnegative
matrix factorization,” Computational Statistics Data Analysis, vol. 52,
pp. 155–173, 9 2007.

[30] C. C. Gordon, T. Churchill, C. E. Clauser, B. Bradtmiller, J. T.
McConville, I. Tebbetts, and R. A. Walker, “1988 anthropometric survey
of u.s. personnel: Summary statistics interim report,” 1988.

[31] G. I. Bain, N. Polites, B. G. Higgs, R. J. Heptinstall, and A. M. McGrath,
“The functional range of motion of the finger joints,” Journal of Hand
Surgery: European Volume, vol. 40, pp. 406–411, 5 2015.
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